skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Normal ground state of dense relativistic matter in a magnetic field

Journal Article · · Physical Review. D, Particles Fields
 [1];  [2];  [3]
  1. Bogolyubov Institute for Theoretical Physics, 03680, Kiev (Ukraine)
  2. Department of Applied Mathematics, University of Western Ontario, London, Ontario N6A 5B7 (Canada)
  3. Department of Applied Sciences and Mathematics, Arizona State University, Mesa, Arizona 85212 (United States)

The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter {Delta}. In the chiral limit, the value of {Delta} determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the {Delta} parameter is that it is insensitive to temperature when T<<{mu}{sub 0}, where {mu}{sub 0} is the chemical potential, and increases with temperature for T>{mu}{sub 0}. The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

OSTI ID:
21541523
Journal Information:
Physical Review. D, Particles Fields, Vol. 83, Issue 8; Other Information: DOI: 10.1103/PhysRevD.83.085003; (c) 2011 American Institute of Physics; ISSN 0556-2821
Country of Publication:
United States
Language:
English