skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: {alpha}-decay and fusion phenomena in heavy ion collisions using nucleon-nucleon interactions derived from relativistic mean-field theory

Journal Article · · Physical Review. C, Nuclear Physics
; ;  [1]
  1. Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India)

Nucleus-nucleus potentials are determined in the framework of the double-folding model for a new microscopic nucleon-nucleon (NN) interaction relativistic mean field-3-Yukawa (R3Y) derived from the popular relativistic mean-field theory Lagrangian, and the results are compared for the use of Michigan-3-Yukawa (M3Y) effective NN interactions. The double-folding potentials so obtained are further taken up in the context of the preformed cluster model (PCM) of Gupta and collaborators and the barrier penetration model to study respectively the ground-state (g.s.) {alpha}-decay and low-energy fusion reactions. In this paper, using PCM, we deduce empirically the {alpha} preformation probability P{sub 0}{sup {alpha}(emp)} from experimental data on a few g.s. {alpha} decays in the trans-lead region. For fusion reactions, two projectile-target systems {sup 12}C+{sup 208}Pb and {sup 16}O+{sup 208}Pb are selected for calculating the barrier energies as well positions, fusion cross sections ({sigma}{sub fus}), and fusion barrier distribution [D(E{sub c.m.})]. The barrier energies and positions change for the R3Y NN interactions in comparison with those of the M3Y NN interactions. We find that in the {alpha}-decay studies the values of P{sub 0}{sup {alpha}(emp)}(R3Y) are similar to those of P{sub 0}{sup {alpha}(emp)}(M3Y). Further, both NN interactions give similar {sigma}{sub fus} values using the Wong formula specifically when the R3Y NN interaction calculated {sigma}{sub fus} values are reduced by 1.5 times, and the results are in agreement with the experimental data for both the systems, especially for the higher energies. Results for D(E{sub c.m.}) are also quite similar for both choices of NN interaction.

OSTI ID:
21502785
Journal Information:
Physical Review. C, Nuclear Physics, Vol. 83, Issue 6; Other Information: DOI: 10.1103/PhysRevC.83.064601; (c) 2011 American Institute of Physics; ISSN 0556-2813
Country of Publication:
United States
Language:
English