skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Visible and infrared luminescence properties of Er{sup 3+}-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals

Journal Article · · Journal of Solid State Chemistry
 [1]; ; ;  [1]
  1. Graduate Institute of Opto-Mechatronics Engineering, National Chung Cheng University, 168 University Rd., Min-Hsiung, Chia-Yi, Taiwan, ROC (China)

Er{sup 3+}-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals were fabricated by the sol-gel method. While the annealing temperature exceeds 757 {sup o}C, amorphous pyrochlore phase Er{sub x}Y{sub 2-x}Ti{sub 2}O{sub 7} transfers to well-crystallized nanocrystals, and the average crystal size increases from {approx}70 to {approx}180 nm under 800-1000 {sup o}C/1 h annealing. Er{sub x}Y{sub 2-x}Ti{sub 2}O{sub 7} nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; {sup 2}H{sub 11/2}{yields}{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 15/2}, and {sup 4}F{sub 9/2}{yields}{sup 4}I{sub 15/2}, respectively) and Stokes (1528 nm; {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}) photoluminescence (PL). The infrared PL decay curve is single-exponential for Er{sup 3+} (5 mol%)-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals but slightly nonexponential for Er{sup 3+} (10 mol%)-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals. For 5 and 10 mol% doping concentrations, the mechanism of up-converted green light is the two-photon excited-state absorption. Much stronger intensity of red light relative to green light was observed for the sample with 10 mol% dopant. This phenomenon can be attributed to the reduced distance between Er{sup 3+}-Er{sup 3+} ions, resulting in the enhancement of the energy-transfer upconversion and cross-relaxation mechanisms. -- Graphical Abstract: Emission fluorescence spectra of the Er{sup 3+} (3, 5, 7, or 10 mol%)-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals annealed at 800 {sup o}C for 1 h under 980 nm pumping. The Er{sup 3+}-doped Y{sub 2}Ti{sub 2}O{sub 7} nanocrystals absorbing 980 nm photons can produce the upconversion (526, 547, and 660 nm; {sup 2}H{sub 11/2}{yields}{sup 4}I{sub 15/2}, {sup 4}S{sub 3/2}{yields}{sup 4}I{sub 15/2}, and {sup 4}F{sub 9/2}{yields}{sup 4}I{sub 15/2}, respectively) and Stokes (1528 nm; {sup 4}I{sub 13/2}{yields}{sup 4}I{sub 15/2}) photoluminescence. Display Omitted Research highlights: {yields} Er{sub 0.05}Y{sub 0.95}Ti{sub 2}O{sub 7} nanocrystals annealed at 800 {sup o}C exhibit the crystalline pyrochlore structure. {yields} Er{sub 0.05}Y{sub 0.95}Ti{sub 2}O{sub 7} nanocrystals possess the maximum upconversion and Stokes PL intensities. {yields} The upconversion mechanism of Er{sub 0.05}Y{sub 0.95}Ti{sub 2}O{sub 7} are the two-photon excited-state absorption.

OSTI ID:
21494238
Journal Information:
Journal of Solid State Chemistry, Vol. 184, Issue 3; Other Information: DOI: 10.1016/j.jssc.2011.01.001; PII: S0022-4596(11)00002-8; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English