skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: On the Importance of Accounting for Competing Risks in Pediatric Brain Cancer: II. Regression Modeling and Sample Size

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [3]
  1. Department of Epidemiology and Public Health, Yong Loo Lin School of Medicine, National University of Singapore (Singapore)
  2. Children's Brain Tumour Research Centre, University of Nottingham, Nottingham (United Kingdom)
  3. Children's Cancer and Leukaemia Group, University of Leicester, Leicester (United Kingdom)

Purpose: To accurately model the cumulative need for radiotherapy in trials designed to delay or avoid irradiation among children with malignant brain tumor, it is crucial to account for competing events and evaluate how each contributes to the timing of irradiation. An appropriate choice of statistical model is also important for adequate determination of sample size. Methods and Materials: We describe the statistical modeling of competing events (A, radiotherapy after progression; B, no radiotherapy after progression; and C, elective radiotherapy) using proportional cause-specific and subdistribution hazard functions. The procedures of sample size estimation based on each method are outlined. These are illustrated by use of data comparing children with ependymoma and other malignant brain tumors. The results from these two approaches are compared. Results: The cause-specific hazard analysis showed a reduction in hazards among infants with ependymoma for all event types, including Event A (adjusted cause-specific hazard ratio, 0.76; 95% confidence interval, 0.45-1.28). Conversely, the subdistribution hazard analysis suggested an increase in hazard for Event A (adjusted subdistribution hazard ratio, 1.35; 95% confidence interval, 0.80-2.30), but the reduction in hazards for Events B and C remained. Analysis based on subdistribution hazard requires a larger sample size than the cause-specific hazard approach. Conclusions: Notable differences in effect estimates and anticipated sample size were observed between methods when the main event showed a beneficial effect whereas the competing events showed an adverse effect on the cumulative incidence. The subdistribution hazard is the most appropriate for modeling treatment when its effects on both the main and competing events are of interest.

OSTI ID:
21491667
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 79, Issue 4; Other Information: DOI: 10.1016/j.ijrobp.2009.12.024; PII: S0360-3016(09)03689-X; Copyright (c) 2011 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0360-3016
Country of Publication:
United States
Language:
English

Similar Records

On the Importance of Accounting for Competing Risks in Pediatric Cancer Trials Designed to Delay or Avoid Radiotherapy: I. Basic Concepts and First Analyses
Journal Article · Thu Apr 15 00:00:00 EDT 2010 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:21491667

Modern Radiation Therapy and Cardiac Outcomes in Breast Cancer
Journal Article · Tue Mar 15 00:00:00 EDT 2016 · International Journal of Radiation Oncology, Biology and Physics · OSTI ID:21491667

Tumors of the brain and nervous system after radiotherapy in childhood
Journal Article · Thu Oct 20 00:00:00 EDT 1988 · N.Engl. J. Med.; (United States) · OSTI ID:21491667