skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Magnetic and electrical properties of quadruple perovskites with 12 layer structures Ba{sub 4}LnM{sub 3}O{sub 12} (Ln=rare earths; M=Ru, Ir): The role of metal-metal bonding in perovskite-related oxides

Journal Article · · Journal of Solid State Chemistry
; ;  [1];  [1]
  1. Division of Chemistry, Hokkaido University, Sapporo 060-0810 (Japan)

Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba{sub 4}LnM{sub 3}O{sub 12} (Ln=rare earths; M=Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. Three MO{sub 6} octahedra are connected to each other by face-sharing and form a M{sub 3}O{sub 12} trimer. The M{sub 3}O{sub 12} trimers and LnO{sub 6} octahedra are alternately linked by corner-sharing, forming the perovskite-type structure with 12 layers. For Ln=Ce, Pr, and Tb, both the Ln and M ions are in the tetravalent state (Ba{sub 4}Ln{sup 4+}M{sup 4+}{sub 3}O{sub 12}), and for other Ln ions, Ln ions are in the trivalent state and the mean oxidation state of M ions is +4.33 (Ba{sub 4}Ln{sup 3+}M{sup 4.33+}{sub 3}O{sub 12}). All the Ba{sub 4}Ln{sup 3+}Ru{sup 4.33+}{sub 3}O{sub 12} compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba{sub 4}Ln{sup 3+}Ir{sup 4.33+}{sub 3}O{sub 12} is paramagnetic down to 1.8 K. Ba{sub 4}Ce{sup 4+}Ir{sup 4+}{sub 3}O{sub 12} orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba{sub 4}Ce{sup 4+}Ru{sup 4+}{sub 3}O{sub 12} is paramagnetic. These magnetic results were well understood by the magnetic behavior of M{sub 3}O{sub 12}. The effective magnetic moments and the entropy change for the magnetic ordering show that the trimers Ru{sup 4.33+}{sub 3}O{sub 12} and Ir{sup 4+}{sub 3}O{sub 12} have the S=1/2 ground state, and in other cases there is no magnetic contribution from the trimers Ru{sup 4+}{sub 3}O{sub 12} or Ir{sup 4.33+}{sub 3}O{sub 12}. Measurements of the electrical resistivity of Ba{sub 4}LnM{sub 3}O{sub 12} and its analysis show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior. - Graphical abstract: Structures and magnetic and electrical properties of quadruple perovskites containing rare earths Ba{sub 4}LnM{sub 3}O{sub 12} (Ln=rare earths; M = Ru, Ir) were investigated. They crystallize in the 12L-perovskite-type structure. All the Ba{sub 4}Ln{sup 3+}Ru{sup 4.33+}{sub 3}O{sub 12} compounds show magnetic ordering at low temperatures, while any of the corresponding iridium-containing compounds Ba{sub 4}Ln{sup 3+}Ir{sup 4.33+}{sub 3}O{sub 12} is paramagnetic down to 1.8 K. Ba{sub 4}Ce{sup 4+}Ir{sup 4+}{sub 3}O{sub 12} orders antiferromagnetically at 10.5 K, while the corresponding ruthenium-containing compound Ba{sub 4}Ce{sup 4+}Ru{sup 4+}{sub 3}O{sub 12} is paramagnetic. These magnetic results were well understood by the magnetic behavior of M{sub 3}O{sub 12}. The electrical resistivity measurements show that these compounds demonstrate two-dimensional Mott-variable range hopping behavior.

OSTI ID:
21483664
Journal Information:
Journal of Solid State Chemistry, Vol. 183, Issue 9; Other Information: DOI: 10.1016/j.jssc.2010.06.023; PII: S0022-4596(10)00274-4; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English