skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal decomposition behavior of the rare-earth ammonium sulfate R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4}

Journal Article · · Journal of Solid State Chemistry
 [1];  [1];  [1]
  1. Department of Applied Chemistry, Faculty of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

Rare-earth ammonium sulfate octahydrates of R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4}.8H{sub 2}O (R=Pr, Nd, Sm, and Eu) were synthesized by a wet process, and the stable temperature region for the anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} form was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Detailed characterization of these double salts demonstrated that the thermal stability of anhydrous R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} is different between the Pr, Nd salts and the Sm, Eu salts, and the thermal decomposition behavior of these salts was quite different from the previous reports. - Graphical abstract: Stable temperature range of anhydrous rare-earth ammonium sulfate R{sub 2}(SO{sub 4}){sub 3}.(NH{sub 4}){sub 2}SO{sub 4} was clarified by thermogravimetry/differential thermal analysis, infrared, Raman, and electrical conductivity measurements. Since the previous reports were based only on thermal analysis, the present work has more accurately determined the exact thermal stability of rare-earth ammonium sulfate solids.

OSTI ID:
21483658
Journal Information:
Journal of Solid State Chemistry, Vol. 183, Issue 7; Other Information: DOI: 10.1016/j.jssc.2010.04.038; PII: S0022-4596(10)00185-4; Copyright (c) 2010 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; ISSN 0022-4596
Country of Publication:
United States
Language:
English