skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE DYNAMICS OF DUST GRAINS IN THE OUTER SOLAR SYSTEM

Journal Article · · Astrophysical Journal

We study the dynamics of large dust grains {approx}>1 {mu}m with orbits outside of the heliosphere (beyond 250 AU). Motion of the solar system through the interstellar medium (ISM) at a velocity of 26 km s{sup -1} subjects these particles to gas and Coulomb drag (grains are expected to be photoelectrically charged) as well as the Lorentz force and the electric force caused by the induction electric field. We show that to zeroth order the combined effect of these forces can be well described in the framework of the classical Stark problem: particle motion in a Keplerian potential subject to an additional constant force. Based on this analogy, we elucidate the circumstances in which the motion becomes unbound, and show that under local ISM conditions dust grains smaller than {approx}100 {mu}m originating in the Oort Cloud (e.g., in collisions of comets) beyond 10{sup 4} AU are ejected from the solar system under the action of the electric force. Orbital motion of larger, bound grains is described analytically using the orbit-averaged Hamiltonian approach and consists of orbital plane precession at a fixed semimajor axis, accompanied by the periodic variations of the inclination and eccentricity (the latter may approach unity in some cases). A more detailed analysis of the combined effect of gas and Coulomb drag shows it is possible to reduce particle semimajor axes, but that the degree of orbital decay is limited (a factor of several at best) by passages through atomic and molecular clouds, which easily eject small particles.

OSTI ID:
21471231
Journal Information:
Astrophysical Journal, Vol. 723, Issue 2; Other Information: DOI: 10.1088/0004-637X/723/2/1718; ISSN 0004-637X
Country of Publication:
United States
Language:
English

Similar Records

Probing Oort cloud and local interstellar medium properties via dust produced in cometary collisions
Journal Article · Mon Jan 20 00:00:00 EST 2014 · Astrophysical Journal · OSTI ID:21471231

DYNAMICS OF DUST PARTICLES RELEASED FROM OORT CLOUD COMETS AND THEIR CONTRIBUTION TO RADAR METEORS
Journal Article · Sat Dec 10 00:00:00 EST 2011 · Astrophysical Journal · OSTI ID:21471231

Distant Comet C/2017 K2 and the Cohesion Bottleneck
Journal Article · Fri Feb 01 00:00:00 EST 2019 · Astronomical Journal (New York, N.Y. Online) · OSTI ID:21471231