skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: THE MASS-LOSS RETURN FROM EVOLVED STARS TO THE LARGE MAGELLANIC CLOUD. II. DUST PROPERTIES FOR OXYGEN-RICH ASYMPTOTIC GIANT BRANCH STARS

Journal Article · · Astrophysical Journal
; ;  [1];  [2]; ;  [3];  [4];  [5];  [6];  [7];  [8];  [9]
  1. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
  2. Institut d'Astrophysique de Paris, 98 bis, Boulevard Arago, Paris 75014 (France)
  3. Jodrell Bank Centre for Astrophysics, Alan Turing Building, School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)
  4. Physics and Astronomy Department, University of Missouri, Columbia, MO 65211 (United States)
  5. Institute of Origins, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)
  6. Centre d'Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, BP 44346, 31028 Toulouse Cedex 4 (France)
  7. Laboratoire AIM, CEA/DSM-CNRS-Universite Paris Diderot DAPNIA/Service d'Astrophysique Bat. 709, CEA-Saclay F-91191 Gif-sur-Yvette Cedex (France)
  8. Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)
  9. Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)

We model multi-wavelength broadband UBVIJHK{sub s} and Spitzer IRAC and MIPS photometry and Infrared Spectrograph spectra from the SAGE and SAGE-Spectroscopy observing programs of two oxygen-rich asymptotic giant branch (O-rich AGB) stars in the Large Magellanic Cloud (LMC) using radiative transfer (RT) models of dust shells around stars. We chose a star from each of the bright and faint O-rich AGB populations found by earlier studies of the SAGE sample in order to derive a baseline set of dust properties to be used in the construction of an extensive grid of RT models of the O-rich AGB stars found in the SAGE surveys. From the bright O-rich AGB population, we chose HV 5715, and from the faint O-rich AGB population we chose SSTISAGE1C J052206.92-715017.6 (SSTSAGE052206). We found the complex indices of refraction of oxygen-deficient silicates from Ossenkopf et al. and a power law with exponential decay grain size distribution like what Kim et al. used but with {gamma} of -3.5, a {sub min} of 0.01 {mu}m, and a {sub 0} of 0.1 {mu}m to be reasonable dust properties for these models. There is a slight indication that the dust around the faint O-rich AGB may be more silica-rich than that around the bright O-rich AGB. Simple models of gas emission suggest a relatively extended gas envelope for the faint O-rich AGB star modeled, consistent with the relatively large dust shell inner radius for the same model. Our models of the data require the luminosity of SSTSAGE052206 and HV 5715 to be {approx}5100 L {sub sun} and {approx}36,000 L {sub sun}, respectively. This, combined with the stellar effective temperatures of 3700 K and 3500 K, respectively, that we find best fit the optical and near-infrared data, suggests stellar masses of {approx}3 M {sub sun} and {approx}7 M {sub sun}. This, in turn, suggests that HV 5715 is undergoing hot-bottom burning and that SSTSAGE052206 is not. Our models of SSTSAGE052206 and HV 5715 require dust shells of inner radius {approx}17 and {approx}52 times the stellar radius, respectively, with dust temperatures there of 900 K and 430 K, respectively, and with optical depths at 10 {mu}m through the shells of 0.095 and 0.012, respectively. The models compute the dust mass-loss rates for the two stars to be 2.0 x 10{sup -9} M{sub sun} yr{sup -1} and 2.3 x 10{sup -9} M{sub sun} yr{sup -1}, respectively. When a dust-to-gas mass ratio of 0.002 is assumed for SSTSAGE052206 and HV 5715, the dust mass-loss rates imply total mass-loss rates of 1.0 x 10{sup -6} M{sub sun} yr{sup -1} and 1.2 x 10{sup -6} M{sub sun} yr{sup -1}, respectively. These properties of the dust shells and stars, as inferred from our models of the two stars, are found to be consistent with properties observed or assumed by detailed studies of other O-rich AGB stars in the LMC and elsewhere.

OSTI ID:
21451118
Journal Information:
Astrophysical Journal, Vol. 716, Issue 1; Other Information: DOI: 10.1088/0004-637X/716/1/878; ISSN 0004-637X
Country of Publication:
United States
Language:
English