skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radial Spreading of Drift-Wave-Zonal-Flow Turbulence via Soliton Formation

Journal Article · · Physical Review Letters
 [1];  [1];  [2]
  1. Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)
  2. Associazione EURATOM-ENEA sulla Fusione, C.P. 65-00044 Frascati (Italy)

The self-consistent spatiotemporal evolution of a drift-wave (DW) radial envelope and a zonal-flow (ZF) amplitude is investigated in a slab model. The stationary solution of the coupled partial differential equations in a simple limit yields the formation of DW-ZF soliton structures, which propagate radially with speed depending on the envelope peak amplitude. Additional interesting physics, e.g., the generation, destruction, collision, and reflection of solitons, as well as turbulence bursting can also be observed due to the effects of linear growth or damping, dissipation, equilibrium nonuniformities and soliton dynamics. The propagation of soliton causes significant radial spreading of DW turbulence and therefore can affect transport scaling with the system size by broadening of the turbulent region. The correspondence of the present analysis with the description of DW-ZF interactions in toroidal geometry is also discussed.

OSTI ID:
21370613
Journal Information:
Physical Review Letters, Vol. 103, Issue 5; Other Information: DOI: 10.1103/PhysRevLett.103.055002; (c) 2009 The American Physical Society; ISSN 0031-9007
Country of Publication:
United States
Language:
English