skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ginzburg-Landau model of Bose-Einstein condensation of magnons

Journal Article · · Physical Review. B, Condensed Matter and Materials Physics
 [1]; ; ;  [2]
  1. Department of Physical Electronics, School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)
  2. Institute for Applied Physics, University of Muenster, 48149 Muenster (Germany)

We introduce a system of phenomenological equations for Bose-Einstein condensates of magnons in the one-dimensional setting. The nonlinearly coupled equations, written for amplitudes of the right- and left-traveling waves, combine basic features of the Gross-Pitaevskii and complex Ginzburg-Landau models. They include localized source terms to represent the microwave magnon-pumping field. With the source represented by the delta functions, we find analytical solutions for symmetric localized states of the magnon condensates. We also predict the existence of asymmetric states with unequal amplitudes of the two components. Numerical simulations demonstrate that all analytically found solutions are stable. With the delta-function terms replaced by broader sources, the simulations reveal a transition from the single-peak stationary symmetric states to multipeak ones, generated by the modulational instability of extended nonlinear-wave patterns. In the simulations, symmetric initial conditions always converge to symmetric stationary patterns. On the other hand, asymmetric inputs may generate nonstationary asymmetric localized solutions, in the form of traveling or standing waves. Comparison with experimental results demonstrates that the phenomenological equations provide for a reasonably good model for the description of the spatiotemporal dynamics of magnon condensates.

OSTI ID:
21366659
Journal Information:
Physical Review. B, Condensed Matter and Materials Physics, Vol. 81, Issue 2; Other Information: DOI: 10.1103/PhysRevB.81.024418; (c) 2010 The American Physical Society; ISSN 1098-0121
Country of Publication:
United States
Language:
English