skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stimulus-dependent suppression of chaos in recurrent neural networks

Journal Article · · Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print)
; ;  [1]
  1. Lewis-Sigler Institute for Integrative Genomics, Icahn 262, Princeton University, Princeton, New Jersey 08544 (United States)

Neuronal activity arises from an interaction between ongoing firing generated spontaneously by neural circuits and responses driven by external stimuli. Using mean-field analysis, we ask how a neural network that intrinsically generates chaotic patterns of activity can remain sensitive to extrinsic input. We find that inputs not only drive network responses, but they also actively suppress ongoing activity, ultimately leading to a phase transition in which chaos is completely eliminated. The critical input intensity at the phase transition is a nonmonotonic function of stimulus frequency, revealing a 'resonant' frequency at which the input is most effective at suppressing chaos even though the power spectrum of the spontaneous activity peaks at zero and falls exponentially. A prediction of our analysis is that the variance of neural responses should be most strongly suppressed at frequencies matching the range over which many sensory systems operate.

OSTI ID:
21362180
Journal Information:
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics (Print), Vol. 82, Issue 1; Other Information: DOI: 10.1103/PhysRevE.82.011903; (c) 2010 The American Physical Society; ISSN 1539-3755
Country of Publication:
United States
Language:
English

Similar Records

Chaotic neural dynamics facilitate probabilistic computations through sampling
Journal Article · Mon Apr 22 00:00:00 EDT 2024 · Proceedings of the National Academy of Sciences of the United States of America · OSTI ID:21362180

A biological model for construction of meaning to serve as an interface between an intelligent system and its environments
Conference · Tue Dec 31 00:00:00 EST 1996 · OSTI ID:21362180

Information transmission and recovery in neural communications channels
Journal Article · Wed Nov 01 00:00:00 EST 2000 · Physical Review E · OSTI ID:21362180