skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soil Activation and Groundwater Contamination at Brookhaven National Laboratory, Upton, New York

Conference ·
OSTI ID:21326039
 [1];  [2]
  1. Brookhaven National Laboratory, Upton, NY (United States)
  2. Federal Project Director, United States Department of Energy - Brookhaven Site Office, Upton, NY (United States)

In November 1999, tritium (H-3) was detected in the groundwater near one of Brookhaven National Laboratory's (BNL) accelerator experiments at concentrations above the 20,000 pico curie per liter (pCi/L) Maximum Contaminant Level (MCL). Sodium-22 (Na-22) was also detected in the groundwater, but at concentrations well below the 400 pCi/L MCL. An investigation into the source of the contamination revealed that the tritium and sodium-22 originated from activated soil shielding located adjacent to the g-2 target building where approximately five percent of the beam was inadvertently striking one of the beam-line magnets. Rainwater was able to infiltrate the activated soils and carry the tritium and sodium-22 into the groundwater. The highest tritium level detected in groundwater during the 1999 investigation was nearly 1.8 million pCi/L. To prevent additional rainwater infiltration into the activated soil shielding, a concrete cap was constructed over the soil shielding in December 1999. Other corrective actions included refocusing the beam and improved beam loss monitoring to reduce additional soil activation, storm-water management improvements, and additional groundwater monitoring. From 2001 through 2004, three high concentration zones (or slugs) of tritium were observed passing through the groundwater monitoring well network immediately down-gradient of the source area, with a maximum observed concentration of 3.4 million pCi/L. Some of the tritium that was previously leached from the activated soil was trapped in the vadose (unsaturated) zone soils directly above the water table after then cap was installed. A portion of this residual tritium was later mobilized into the groundwater during periods of high groundwater table elevations, which can occur following heavy seasonal rainfall. Monitoring results for the past two years indicate that the amount of tritium being released from the vadose zone is decreasing, with tritium concentrations consistently below 100,000 pCi/L. The tritium plume is currently 550 meters long, and is located entirely in the central portion of the BNL site. The plume has not impacted any of the Laboratory's drinking water supply wells. Contaminant transport modeling suggests that the tritium plume will attenuate entirely in the central portion of the BNL site by years 2010-2015. (authors)

Research Organization:
WM Symposia, 1628 E. Southern Avenue, Suite 9 - 332, Tempe, AZ 85282 (United States)
OSTI ID:
21326039
Report Number(s):
INIS-US-10-WM-08080; TRN: US10V0376067404
Resource Relation:
Conference: WM'08: Waste Management Symposium 2008 - HLW, TRU, LLW/ILW, Mixed, Hazardous Wastes and Environmental Management - Phoenix Rising: Moving Forward in Waste Management, Phoenix, AZ (United States), 24-28 Feb 2008; Other Information: Country of input: France; 7 refs
Country of Publication:
United States
Language:
English