skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Average observational quantities in the timescape cosmology

Journal Article · · Physical Review. D, Particles Fields
 [1]
  1. Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand, and International Center for Relativistic Astrophysics Network (ICRANet), Piazzale le della Repubblica 10, Pescara 65121 (Italy)

We examine the properties of a recently proposed observationally viable alternative to homogeneous cosmology with smooth dark energy, the timescape cosmology. In the timescape model cosmic acceleration is realized as an apparent effect related to the calibration of clocks and rods of observers in bound systems relative to volume-average observers in an inhomogeneous geometry in ordinary general relativity. The model is based on an exact solution to a Buchert average of the Einstein equations with backreaction. The present paper examines a number of observational tests which will enable the timescape model to be distinguished from homogeneous cosmologies with a cosmological constant or other smooth dark energy, in current and future generations of dark energy experiments. Predictions are presented for comoving distance measures; H(z); the equivalent of the dark energy equation of state, w(z); the Om(z) measure of Sahni, Shafieloo, and Starobinsky; the Alcock-Paczynski test; the baryon acoustic oscillation measure, D{sub V}; the inhomogeneity test of Clarkson, Bassett, and Lu; and the time drift of cosmological redshifts. Where possible, the predictions are compared to recent independent studies of similar measures in homogeneous cosmologies with dark energy. Three separate tests with indications of results in possible tension with the {lambda}CDM model are found to be consistent with the expectations of the timescape cosmology.

OSTI ID:
21313567
Journal Information:
Physical Review. D, Particles Fields, Vol. 80, Issue 12; Other Information: DOI: 10.1103/PhysRevD.80.123512; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English