skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Approximate analytic spectra of reionized CMB anisotropies and polarization generated by relic gravitational waves

Journal Article · · Physical Review. D, Particles Fields
;  [1]
  1. Key Laboratory of Galactic and Cosmological Research, Astrophysics Center, University of Sciences and Technology of China, Chinese Academy of Sciences, Hefei, Anhui (China)

We present an approximate, analytical calculation of the reionized spectra C{sub l}{sup XX} of cosmic microwave background radiation anisotropies and polarizations generated by relic gravitational waves (RGWs). Three simple models of reionization are explored, whose visibility functions are fitted by Gaussian types of functions as approximations. We have derived the analytical polarization {beta}{sub l} and temperature anisotropies {alpha}{sub l}, which both consist of two terms proportional to RGWs at the decoupling and at the reionization as well. The explicit dependence of {beta}{sub l} and {alpha}{sub l} upon the reionization time {eta}{sub r}, the duration {delta}{eta}{sub r}, and the optical depth {kappa}{sub r} is demonstrated. Moreover, {beta}{sub l} and {alpha}{sub l} contain {kappa}{sub r} in different coefficients, and the polarization spectra C{sub l}{sup EE} and C{sub l}{sup BB} are more sensitive probes of reionization than C{sub l}{sup TT}. These results facilitate examination of the reionization effects, in particular, the degeneracies of {kappa}{sub r} with the normalization amplitude and with the initial spectral index of RGWs. It is also found that reionization causes a {kappa}{sub r}-dependent shift {delta}l{approx}20 of the zero multipole l{sub 0} of C{sub l}{sup TE}, an effect that should be included in order to detect the traces of RGWs. Compared with numerical results, the analytical C{sub l}{sup XX} are approximate and have the limitation. For the primary peaks in the range l{approx_equal}(30,600), the error is {<=}3% in three different models. In the range l<20 for the reionization bumps, the error is {<=}15% for C{sub l}{sup EE} and C{sub l}{sup BB} in the two extended reionization models, and C{sub l}{sup TT} and C{sub l}{sup TE} have much larger departures for l<10. The bumps in the sudden reionization model are too low.

OSTI ID:
21308246
Journal Information:
Physical Review. D, Particles Fields, Vol. 79, Issue 8; Other Information: DOI: 10.1103/PhysRevD.79.083002; (c) 2009 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 0556-2821
Country of Publication:
United States
Language:
English