skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermal Ablation by High-Intensity-Focused Ultrasound Using a Toroid Transducer Increases the Coagulated Volume and Allows Coagulation Near Portal and Hepatic veins in Pigs

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.3131399· OSTI ID:21293552

A new geometry of HIFU transducer is described to enlarge the coagulated volume. The geometry of the transducer was not spherical. The surface of the transducer was built based on a toroid geometry. The transducer was generated by the revolution of a circle about an axis lying in its plane. Eight emitters operating at a frequency of 3 MHz were diced out of a single toroid piezocomposite element. Each of the eight emitters was divided into 32 transducers. The focal zone is conical and located at 70 mm from the transducer. A 7.5 MHz ultrasound imaging probe is placed in the centre of the device for guiding the treatment. Our long-term objective is to develop a device that can be used during surgery. In vivo trials have been performed on 13 pigs to demonstrate this new principle and to evaluate the vascular tolerance of the treatment. This new geometry combined with consecutive activation of the eight emitters around the toroid allows achieving a mean thermal ablation of 7.0{+-}2.5 cm3 in 40 seconds. All lesions were visible with high contrast on sonograms. The correlation between the size of lesions observed on sonograms and during gross examination was 92%. This allows the user to easily enlarge the coagulated volume by juxtaposing single lesions. The pigs tolerate the treatment well over the experimental period even when coagulation was produced through portal and/or hepatic veins.

OSTI ID:
21293552
Journal Information:
AIP Conference Proceedings, Vol. 1113, Issue 1; Conference: 8. international symposium on therapeutic ultrasound, Minneapolis, MN (United States), 10-13 Sep 2008; Other Information: DOI: 10.1063/1.3131399; (c) 2009 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English