skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reduction of Sodium Nitrate Liquid Waste in Nuclear Reprocessing Plants

Conference ·
OSTI ID:21208659
; ; ;  [1];  [2]
  1. JGC Corporation, Technologies Research Center, 2205, Narita-cho, Oarai-machi, Higashiibarakigun, Ibaraki Pref., 311-1313 (Japan)
  2. JGC Corporation, Yokohama World Operation Center, 2-3-1, Minato Mirai, Nishi-ku, Yokohama, Kanagawa Pref., 220-6001 (Japan)

Sodium nitrate solution has been generated from nuclear reprocessing plant as a result of neutralization of nitric acid. The sodium nitrate has been immobilized by bitumen, cement or other material in the site and waste packages have been produced. In order to reduce an environmental impact of the waste packages from the reprocessing plant, it is preferable to decompose nitrate ion to harmless gases such as nitrogen. A combination of formic acid and catalyst has been proposed for this purpose. But, the method is inadequate for a full decomposition of the nitrate ion. In addition, a mixture of NO and NO{sub 2} is produced during the reaction. Formaldehyde and hydrazine were selected as reductants and a combined use of Pd-Cu catalyst was tried to decompose the nitrate ion. As a result, the nitrate ion can almost entirely be decomposed without any generation of NO and NO{sub 2}. The test was conducted by 1 L flask. In case of formaldehyde, nitrate ion concentration can be reduced from 0.017 mol/l to 3.9x10{sup -4} mol/l. In case of hydrazine, nitrate concentration can be decreased from 2.8 mol/l to 9.5 x 10{sup -3} mol/l and ammonium ion is detected. The ammonium ion concentration in the final solution is 0.12 mol/l when 2.8 mol/l nitrate is reduced by hydrazine. Chemical reactions for formaldehyde on the Pd-Cu catalyst are estimated as combination of: NO{sub 3-} + HCHO = NO{sub 2-} + HCOOH; 2NO{sub 2-} + 3HCOOH = N{sub 2} + 3CO{sub 2} + 2H{sub 2}O + 2OH-; 4NO{sub 2-} + 3HCHO = 2N{sub 2} + 3CO{sub 2} + H{sub 2}O + 4OH-. the other hand, for hydrazine with the Pd-Cu catalyst: 3N{sub 2}H{sub 4} = 2NH{sub 3} + 2N{sub 2} + 3H{sub 2}; NO{sub 3-} + H{sub 2} = NO{sub 2-} + H{sub 2}O; NO{sub 2-} + NH{sub 3} = N{sub 2} + H{sub 2}O + OH-. The fundamental research shows that the combination usage of the Pd-Cu catalyst and formaldehyde or hydrazine is applicable for the reduction of nitrate liquid waste in the nuclear reprocessing plant. (authors)

Research Organization:
WM Symposia, Inc., PO Box 13023, Tucson, AZ, 85732-3023 (United States)
OSTI ID:
21208659
Report Number(s):
INIS-US-09-WM-06177; TRN: US09V0970079446
Resource Relation:
Conference: Waste Management 2006 Symposium - WM'06 - Global Accomplishments in Environmental and Radioactive Waste Management: Education and Opportunity for the Next Generation of Waste Management Professionals, Tucson, AZ (United States), 26 Feb - 2 Mar 2006; Other Information: Country of input: France; 6 refs
Country of Publication:
United States
Language:
English