skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fast Track Characterization of Highly Radioactive Waste Pits Combining Off-the-Shelf Robotics with Innovative Investigation Protocols

Conference ·
OSTI ID:21144218
 [1];  [2]
  1. AREVA NC Marcoule, 30130 Bagnols sur Ceze (France)
  2. CEA/UMODD Marcoule, 30130 Bagnols s/ ceze (France)

The investigation and characterization of radioactive waste pits and effluent storage tanks represents a substantial and challenging step in the overall decommissioning programme launched by AREVA NC in 1998 on the site of Marcoule on behalf of the French Atomic Energy commission. Physical ,radiological and regulatory constraints, combined with a tight schedule, have lead our teams to use proven conventional instrumentation and robotics in innovative configurations . One such investigation, conducted on a particularly challenging radioactive effluent storage pit, is described below. The 'H' pit is a stainless steel clad concrete cavity, located in the second basement of the de-cladding building of Marcoule site. It was used for forty years as buffer storage for high activity effluents and has a length of 5 meters, a width of 3 meters , a height of 2.5 meters, and is topped by lead plates over 5 cm thick and The bottom of the cavity is covered with a layer of mud containing mainly graphite, diatoms and resins. The mud level ranges from about 20 centimeters to over 50 centimeters. The overall mud volume is around 2.4 cubic meters. Ambient dose rates above the lead plates exceed 10 mSv/h. The main purpose of our investigation was to characterize the muds for future recovery and conditioning prior to decontaminating the pit. The history of the pit together with the varying mud altimetry lead us to believe that sedimentation had probably occurred throughout the years. We thus decided to combine dose rate measurements using IF104 probes, gamma spectroscopy with CdTe probes and sample collections at different depths to ensure the representativeness and full characterization of the muds. Poor access, ambient dose rates have lead us to conceive a robotic arm, mounted on an shaft which can be modified to fit a wide range of pits and tanks. Custom built robotic tools with maximum manoeuvrability generally involve costs and delays far exceeding our purposes. SIT, a French manufacturer of high precision handling equipment for the nuclear industry, supplied us with a user customized 'Python' Robotic arm and the associated computerized command and control equipment within 6 months of the order. The arm allowed the necessary free movement for a precise characterization of the entire pit while being flexible enough to carry varying measuring and sample collection tools. Investigations included video imaging, precise dimensional checks, collection of effluent samples, gamma spectroscopy and collimated dose rate measurements. Specific tooling and arm extensions were created by SIT for each measurement type. The investigations were conducted successfully, providing a detailed view of the pit condition, a complete mapping of collimated dose rates, a grid of gamma spectroscopy, as well as 8 samples of radioactive mud which were subsequently analyzed in our laboratory . A simple yet innovative technology allowed us to fully characterize this pit and its content within a time frame of less than Eight months We subsequently developed a mud recovery scenario, a process for the conditioning of radioactive muds by cementation, and a complete scenario for the pit decontamination and dismantling. The robotic arm is now being used for the characterization and decontamination of other similar environments on the site of Marcoule.

Research Organization:
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, Illinois 60526 (United States)
OSTI ID:
21144218
Resource Relation:
Conference: DD and R 2007: ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization 2007, Chattanooga, TN (United States), 16-19 Sep 2007; Other Information: Country of input: France; Related Information: In: Proceedings of the 2007 ANS Topical Meeting on Decommissioning, Decontamination, and Reutilization - DD and R 2007, 336 pages.
Country of Publication:
United States
Language:
English