skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A reduced chemical kinetic model for IC engine combustion simulations with primary reference fuels

Journal Article · · Combustion and Flame
;  [1]
  1. Engine Research Center, University of Wisconsin-Madison, 1500 Engineering Drive, ERB 1016B, Madison, WI 53706 (United States)

A reduced chemical kinetic mechanism for the oxidation of primary reference fuel (PRF) has been developed and applied to model internal combustion engines. Starting from an existing reduced reaction mechanism for n-heptane oxidation, a new reduced n-heptane mechanism was generated by including an additional five species and their relevant reactions, by updating the reaction rate constants of several reactions pertaining to oxidation of carbon monoxide and hydrogen, and by optimizing reaction rate constants of selected reactions. Using a similar approach, a reduced mechanism for iso-octane oxidation was built and combined with the n-heptane mechanism to form a PRF mechanism. The final version of the PRF mechanism consists of 41 species and 130 reactions. Validation of the present PRF mechanism was performed with measurements from shock tube tests, and HCCI and direct injection engine experiments available in the literature. The results show that the present PRF mechanism gives reliable performance for combustion predictions, as well as computational efficiency improvements for multidimensional CFD simulations. (author)

OSTI ID:
21125490
Journal Information:
Combustion and Flame, Vol. 155, Issue 4; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English