skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact of exhaust gas recirculation (EGR) on the oxidative reactivity of diesel engine soot

Journal Article · · Combustion and Flame
;  [1]
  1. The EMS Energy Institute, The Pennsylvania State University, 405 Academic Activities Bldg., University Park, PA 16802 (United States)

This paper expands the consideration of the factors affecting the nanostructure and oxidative reactivity of diesel soot to include the impact of exhaust gas recirculation (EGR). Past work showed that soot derived from oxygenated fuels such as biodiesel carries some surface oxygen functionality and thereby possesses higher reactivity than soot from conventional diesel fuel. In this work, results show that EGR exerts a strong influence on the physical properties of the soot which leads to enhanced oxidation rate. HRTEM images showed a dramatic difference between the burning modes of the soot generated under 0 and 20% EGR. The soot produced under 0% EGR strictly followed an external burning mode with no evidence of internal burning. In contrast, soot generated under 20% EGR exhibited dual burning modes: slow external burning and rapid internal burning. The results demonstrate clearly that highly reactive soot can be achieved by manipulating the physical properties of the soot via EGR. (author)

OSTI ID:
21125488
Journal Information:
Combustion and Flame, Vol. 155, Issue 4; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English