skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Proton Magnetic Resonance Spectroscopic Imaging in Newly Diagnosed Glioblastoma: Predictive Value for the Site of Postradiotherapy Relapse in a Prospective Longitudinal Study

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [2];  [2];  [3];  [4]; ;  [1];  [2];  [1]
  1. Department of Radiation Oncology, Institut Claudius Regaud, Toulouse (France)
  2. Laboratory of Biophysics and Medical Imaging, Universite Toulouse III Paul Sabatier, Toulouse (France)
  3. Center for Molecular and Functional Imaging, University of California-San Francisco, San Francisco, CA (United States)
  4. Department of Medical Information, Institut Claudius Regaud, Toulouse (France)

Purpose: To investigate the association between magnetic resonance spectroscopic imaging (MRSI)-defined, metabolically abnormal tumor regions and subsequent sites of relapse in data from patients treated with radiotherapy (RT) in a prospective clinical trial. Methods and Materials: Twenty-three examinations were performed prospectively for 9 patients with newly diagnosed glioblastoma multiforme studied in a Phase I trial combining Tipifarnib and RT. The patients underwent magnetic resonance imaging (MRI) and MRSI before treatment and every 2 months until relapse. The MRSI data were categorized by the choline (Cho)/N-acetyl-aspartate (NAA) ratio (CNR) as a measure of spectroscopic abnormality. CNRs corresponding to T1 and T2 MRI for 1,207 voxels were evaluated before RT and at recurrence. Results: Before treatment, areas of CNR2 (CNR {>=}2) represented 25% of the contrast-enhancing (T1CE) regions and 10% of abnormal T2 regions outside T1CE (HyperT2). The presence of CNR2 was often an early indicator of the site of relapse after therapy. In fact, 75% of the voxels within the T1CE+CNR2 before therapy continued to exhibit CNR2 at relapse, compared with 22% of the voxels within the T1CE with normal CNR (p < 0.05). The location of new contrast enhancement with CNR2 corresponded in 80% of the initial HyperT2+CNR2 vs. 20.7% of the HyperT2 voxels with normal CNR (p < 0.05). Conclusion: Metabolically active regions represented a small percentage of pretreatment MRI abnormalities and were predictive for the site of post-RT relapse. The incorporation of MRSI data in the definition of RT target volumes for selective boosting may be a promising avenue leading to increased local control of glioblastomas.

OSTI ID:
21039792
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 70, Issue 3; Other Information: DOI: 10.1016/j.ijrobp.2007.10.039; PII: S0360-3016(07)04454-9; Copyright (c) 2008 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English