skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Four-Dimensional CT-Based Evaluation of Techniques for Gastric Irradiation

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
; ;  [1]
  1. Department of Radiation Oncology, VU University Medical Center, Amsterdam (Netherlands)

Purpose: To evaluate three-dimensional conformal (3D-CRT), intensity-modulated (IMRT) and respiration-gated radiotherapy (RGRT) techniques for gastric irradiation for target coverage and minimization of renal doses. All techniques were four-dimensional (4D)-CT based, incorporating the intrafractional mobility of the target volume and organs at risk (OAR). Methods and Materials: The stomach, duodenal C-loop, and OAR (kidneys, liver, and heart) were contoured in all 10 phases of planning 4D-CT scans for five patients who underwent abdominal radiotherapy. Planning target volumes (PTVs) encompassing all positions of the stomach (PTV{sub allphases}) were generated. Three respiratory phases for RGRT in inspiration and expiration were identified, and corresponding PTV{sub inspiration} and PTV{sub expiration} and OAR volumes were created. Landmark-based fields recommended for the Radiation Therapy Oncology Group (RTOG) 99-04 study protocol were simulated to assess PTV coverage. IMRT and 3D-CRT planning with and without additional RGRT planning were performed for all PTVs, and corresponding dose volume histograms were analyzed. Results: Use of landmark-based fields did not result in full geometric coverage of the PTV{sub allphases} in any patient. IMRT significantly reduced mean renal doses compared with 3D-CRT (15.0 Gy {+-} 0.9 Gy vs. 20.1 Gy {+-} 9.3 Gy and 16.6 Gy {+-} 1.5 Gy vs. 32.6 Gy {+-} 7.1 Gy for the left and right kidneys, respectively; p = 0.04). No significant increase in renal sparing was seen when adding RGRT to either 3D-CRT or IMRT. Tolerance doses to the other OAR were not exceeded. Conclusions: Individualized field margins are essential for gastric irradiation. IMRT plans significantly reduce renal doses, but the benefits of RGRT in gastric irradiation appear to be limited.

OSTI ID:
21039599
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 69, Issue 3; Other Information: DOI: 10.1016/j.ijrobp.2007.06.062; PII: S0360-3016(07)01177-7; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English