skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Stochastic Event-Driven Molecular Dynamics

Journal Article · · Journal of Computational Physics
 [1];  [2];  [1]
  1. Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-9900 (United States)
  2. Department of Physics, San Jose State University, San Jose, CA 95192 (United States)

A novel Stochastic Event-Driven Molecular Dynamics (SEDMD) algorithm is developed for the simulation of polymer chains suspended in a solvent. SEDMD combines event-driven molecular dynamics (EDMD) with the Direct Simulation Monte Carlo (DSMC) method. The polymers are represented as chains of hard-spheres tethered by square wells and interact with the solvent particles with hard-core potentials. The algorithm uses EDMD for the simulation of the polymer chain and the interactions between the chain beads and the surrounding solvent particles. The interactions between the solvent particles themselves are not treated deterministically as in EDMD, rather, the momentum and energy exchange in the solvent is determined stochastically using DSMC. The coupling between the solvent and the solute is consistently represented at the particle level retaining hydrodynamic interactions and thermodynamic fluctuations. However, unlike full MD simulations of both the solvent and the solute, in SEDMD the spatial structure of the solvent is ignored. The SEDMD algorithm is described in detail and applied to the study of the dynamics of a polymer chain tethered to a hard-wall subjected to uniform shear. SEDMD closely reproduces results obtained using traditional EDMD simulations with two orders of magnitude greater efficiency. Results question the existence of periodic (cycling) motion of the polymer chain.

OSTI ID:
21028305
Journal Information:
Journal of Computational Physics, Vol. 227, Issue 4; Other Information: DOI: 10.1016/j.jcp.2007.11.010; PII: S0021-9991(07)00496-2; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English

Similar Records

An Event-Driven Hybrid Molecular Dynamics and Direct Simulation Monte Carlo Algorithm
Journal Article · Mon Jul 30 00:00:00 EDT 2007 · Journal of Computational Physics · OSTI ID:21028305

A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid
Journal Article · Mon Aug 03 00:00:00 EDT 2009 · Journal of Statistical Mechanics-Theory and Experiment, vol. 2009, no. 11, October 31, 2009, pp. 25 · OSTI ID:21028305

Asynchronous Event-Driven Particle Algorithms
Journal Article · Thu Aug 30 00:00:00 EDT 2007 · SIMULATION: Transactions of the Society for Modeling and Simulation International, vol. 85, no. 4, January 4, 2009, pp. 229-242 · OSTI ID:21028305