skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soft x-ray photoreactions of CF{sub 3}Cl adsorbed on Si(111)-7x7 studied by continuous-time photon-stimulated desorption spectroscopy near F(1s) edge

Journal Article · · Journal of Chemical Physics
DOI:https://doi.org/10.1063/1.2772257· OSTI ID:21024188
; ; ; ; ; ; ; ; ;  [1]
  1. Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

The continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was employed to monitor the monochromatic soft x-ray-induced reactions of CF{sub 3}Cl adsorbed on Si(111)-7x7 near the F(1s) edge (681-704 eV). Sequential F{sup +} PSD spectra were measured as a function of photon exposure at the CF{sub 3}Cl-covered surface (dose=0.3x10{sup 15} molecules/cm{sup 2}, {approx}0.75 ML). The F{sup +} PSD and total electron yield (TEY) spectra of molecular solid CF{sub 3}Cl near the F(1s) edge were also measured. Both F{sup +} PSD and TEY spectra show two features at the energy positions of 690.2 and 692.6 eV, and are attributed to the excitations of F(1s) to 11a{sub 1}[(C-Cl)*] and (8e+12a{sub 1})[(C-F)*] antibonding orbitals, respectively. Following Auger decay, two holes are created in the F(2p) lone pair and/or C-F bonding orbitals forming the 2h1e final state which leads to the F{sup +} desorption. This PSD mechanism, which is responsible for the F{sup +} PSD of solid CF{sub 3}Cl, is employed to interpret the first F{sup +} PSD spectrum in the sequential F{sup +} PSD spectra. The variation of spectrum shapes in the sequential F{sup +} PSD spectra indicates the dissipation of adsorbed CF{sub 3}Cl molecules and the formation of surface SiF species as a function of photon exposure. From the sequential F{sup +} PSD spectra the photolysis cross section of the adsorbed CF{sub 3}Cl molecules by photons with varying energy (681-704 eV) is determined to be {approx}1.0x10{sup -17} cm{sup 2}.

OSTI ID:
21024188
Journal Information:
Journal of Chemical Physics, Vol. 127, Issue 11; Other Information: DOI: 10.1063/1.2772257; (c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9606
Country of Publication:
United States
Language:
English