skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A new molecular precursor route for the synthesis of Bi-Y, Y-Nb and Bi-doped Y-Nb oxides at moderate temperatures

Journal Article · · Journal of Solid State Chemistry
 [1];  [1]
  1. Unite de Chimie des Materiaux Inorganiques et Organiques, Universite Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve (Belgium)

Yttrium-based multimetallic oxides containing bismuth and/or niobium were prepared by a method starting from pre-isolated stable water-soluble precursors which are complexes with the ethylenediaminetetraacetate ligand (edta). The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} (x=0.22, 0.25 and 0.3) and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form in a range of moderate temperatures (600-650 deg. C). This preparation method also allowed to stabilize at room temperature, without quenching, the tetragonal YNbO{sub 4} oxide in a distorted form (T'-phase) by calcining the precursor at 800 deg. C. When heated up to 1000 deg. C, this metastable T'-phase transforms into the metastable 'high-temperature' T oxide, which converts on cooling down to room temperature into the thermodynamically stable monoclinic M oxide. Doping the YNbO{sub 4} oxide with Bi{sup 3+} cations (0.5% and 1% Bi with respect to total Bi+Y amount) led at 800 deg. C to a mixture of the T'-phase and the thermodynamically stable monoclinic one. At 900 deg. C, the almost pure monoclinic structure was obtained. - Graphical abstract: Bi-Y, Nb-Y and Bi-doped Nb-Y oxides were prepared by a molecular precursors method from pre-isolated water-soluble edta-based complexes. The cubic Bi{sub 1-} {sub x} Y {sub x} O{sub 1.5} and Y{sub 3}NbO{sub 7} oxides were obtained in a pure form at the moderate temperature of 650 deg. C. A distorted tetragonal YNbO{sub 4} phase was also stabilized at room temperature by calcining the precursor at 800 deg. C, and the pure corresponding monoclinic oxide has been obtained near 1100 deg. C.

OSTI ID:
21015757
Journal Information:
Journal of Solid State Chemistry, Vol. 180, Issue 3; Other Information: DOI: 10.1016/j.jssc.2007.01.027; PII: S0022-4596(07)00060-6; Copyright (c) 2007 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0022-4596
Country of Publication:
United States
Language:
English