skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Model for an irreversible bias current in the superconducting qubit measurement process

Journal Article · · Physical Review. A
;  [1];  [2];  [3]; ;  [4];  [5];  [6]
  1. Hitachi Cambridge Laboratory, Hitachi Europe Ltd., Cambridge CB3 OHE (United Kingdom)
  2. Department of Mathematics, University of Queensland, St. Lucia, Queensland 4072 (Australia)
  3. Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA (United Kingdom)
  4. Quantum Information Processing Group, Hewlett-Packard Laboratories, Filton Road, Stoke Gifford, Bristol BS34 8QZ (United Kingdom)
  5. Centre for Quantum Computer Technology, Department of Physics, University of Queensland, St. Lucia, Queensland 4072 (Australia)
  6. Microelectronics Research Centre, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

The superconducting charge-phase ''quantronium'' qubit is considered in order to develop a model for the measurement process used in the experiment of Vion et al. [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device.

OSTI ID:
20976431
Journal Information:
Physical Review. A, Vol. 74, Issue 6; Other Information: DOI: 10.1103/PhysRevA.74.062302; (c) 2006 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English

Similar Records

Charge-insensitive qubit design derived from the Cooper pair box
Journal Article · Mon Oct 15 00:00:00 EDT 2007 · Physical Review. A · OSTI ID:20976431

Electrical and structural characterization of superconducting-normal-superconducting step-edge Josephson junctions
Miscellaneous · Sat Dec 31 00:00:00 EST 1994 · OSTI ID:20976431

Quantum stability and screening in superconducting metallic weak links
Journal Article · Sun Apr 01 00:00:00 EST 1984 · Phys. Rev. B: Condens. Matter; (United States) · OSTI ID:20976431