skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rich premixed laminar methane flames doped by light unsaturated hydrocarbons. II. 1,3-Butadiene

Journal Article · · Combustion and Flame
; ; ;  [1]
  1. Departement de Chimie-Physique des Reactions, UMR 7630 CNRS, INPL-ENSIC, 1 rue Grandville, BP 20451, 54001 Nancy Cedex (France)

In line with the study presented in Part I of this paper, the structure of a rich premixed laminar methane flame doped with 1,3-butadiene has been investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen, and 3.3% of 1,3-butadiene, corresponding to an equivalence ratio of 1.8, and a C{sub 4}H{sub 6}/CH{sub 4} ratio of 16%. The flame has been stabilized on a burner at a pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up to 2150 K. Quantified species included the usual methane C{sub 0}-C{sub 2} combustion products and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene, butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene (isoprene), 1-pentene, 3-methyl-1-butene, benzene, and toluene. To model these new results, some improvements have been made to a mechanism previously developed in our laboratory for the reactions of C{sub 3}-C{sub 4} unsaturated hydrocarbons. The main reaction pathways of consumption of 1,3-butadiene and of formation of C{sub 6} aromatic species have been derived from flow rate analyses. In this case, the C{sub 4} route to benzene formation plays an important role in comparison to the C{sub 3} pathway. (author)

OSTI ID:
20961968
Journal Information:
Combustion and Flame, Vol. 151, Issue 1-2; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English