skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detecting infiltration and impacts of introduced water using strontium isotopes

Journal Article · · Ground Water
;  [1]
  1. University of Wyoming, Laramie, WY (United States). Dept. of Geology & Geophysics

Water introduced to surface drainages, such as agricultural and roadway runoff, mine drainage, or coalbed natural gas (CBNG)-produced water, potentially can be of environmental concern. In order to mitigate potential environmental effects, it may be important to be able to trace water discharged to the surface as it infiltrates and interacts with near-surface aquifers. We have chosen to study water withdrawn during CBNG production for isotope tracing in the hyporheic zone because it poses a variety of economic, environmental, and policy issues in the Rocky Mountain states. Ground water quality must be protected as CBNG water is added to semiarid ecosystems. Strontium (Sr) isotopes are effective fingerprints of the aquifer from which water originates. In this study, CBNG water was found to have a higher Sr-87/Sr-86 ratio than the local alluvial aquifer water. This measurable difference allows the strontium isotope ratio and concentration to be used as tracers of CBNG water following its discharge to the surface. The dissolution and mobilization of salts from soil are an important contributor to ground water quality degradation. In the Powder River basin of Wyoming, the soils are calcium carbonate-buffered systems. The chemical similarity of strontium to calcium allows it to substitute into calcium minerals and enabled us to use strontium isotopes to identify calcium salts mobilized from the soil. Strontium isotopes are an effective monitor of the source of ions and the volume and direction of introduced water flow in the hyporheic zone.

OSTI ID:
20947449
Journal Information:
Ground Water, Vol. 45, Issue 5; ISSN 0017-467X
Country of Publication:
United States
Language:
English