skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capture-ready power plants - options, technologies and economics

Thesis/Dissertation ·
OSTI ID:20905808
 [1]
  1. Massachusetts Institute of Technology, Cambridge, MA (United States). Engineering Systems Division

A plant can be considered to be capture-ready if at some point in the future it can be retrofitted for carbon capture and sequestration and still be economical to operate. The first part of the thesis outlines the two major designs that are being considered for construction in the near-term - pulverized coal (PC) and integrated gasification/combined cycle (IGCC). It details the steps that are necessary to retrofit each of these plants for CO{sub 2} capture and sequestration and assesses the steps that can be taken to reduce the costs and output de-rating of the plant after a retrofit. The second part of the thesis evaluates the lifetime (40 year) net present value (NPV) costs of plants with differing levels of pre-investment for CO{sub 2} capture. Three scenarios are evaluated - a baseline supercritical PC plant, a baseline IGCC plant and an IGCC plant with pre-investment for capture. The results of this thesis show that a baseline PC plant is the most economical choice under low CO{sub 2} tax rates, and IGCC plants are preferable at higher tax rates. The third part of this thesis evaluates the concept of CO{sub 2} 'lock-in'. CO{sub 2} lock-in occurs when a newly built plant is so prohibitively expensive to retrofit for CO{sub 2} capture that it will never be retrofitted for capture, and offers no economic opportunity to reduce the CO{sub 2} emissions from the plant, besides shutting down or rebuilding. The results show that IGCC plants are expected to have lower lifetime CO{sub 2} emissions than a PC plant, given moderate (10-35 $$/ton CO{sub 2}) initial tax rates. Higher 4 (above $$40) or lower (below $7) initial tax rates do not result in significant differences in lifetime CO{sub 2} emissions from these plants. Little difference is seen in the lifetime CO{sub 2} emissions between the IGCC plants with and without pre-investment for CO{sub 2} capture. 32 refs., 22 figs., 20 tabs., 1 app.

OSTI ID:
20905808
Resource Relation:
Other Information: TH: Master of Science in Technology and Policy
Country of Publication:
United States
Language:
English