skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered

Journal Article · · Waste Management

A study was made of the pyrolysis of tyre particles, with the aim of determining the possibilities of using the products resulting from the process as fuel. Three final temperatures were used, determined from thermogravimetric data. The design of the experiment was a horizontal oven containing a reactor into which particles of the original tyre were placed. After the process, a solid fraction (char) remained in the reactor, while the gases generated went through a set of scrubbers where most of the condensable fraction (oils) was retained. Finally, once free of this fraction, the gases were collected in glass ampoules. Solid and liquids fractions were subjected to thermogravimetric analyses in order to study their combustibility. The gas fraction was analysed by means of gas chromatography to establish the content of CO, CO{sub 2}, H{sub 2} and hydrocarbons present in the samples (mainly components of gases produced in the pyrolysis process). A special study was made of the sulphur and chlorine content of all the fractions, as the presence of these elements could be problematic if the products are used as fuel. Tyre pyrolysis engenders a solid carbon residue that concentrates sulphur and chorine, with a relatively high calorific value, although not so high as that of the original tyre. The liquid fraction produced by the process has a high calorific value, which rises with the final temperature, up to 40 MJ/kg. The chlorine content of this fraction is negligible. Over 95% of the gas fraction, regardless of the final temperature, is composed of hydrocarbons of a low molecular weight and hydrogen, this fraction also appearing to be free of chlorine.

OSTI ID:
20875642
Journal Information:
Waste Management, Vol. 24, Issue 5; Other Information: DOI: 10.1016/j.wasman.2003.11.006; PII: S0956053X03002228; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0956-053X
Country of Publication:
United States
Language:
English