skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Extinction of counterflow diffusion flames with radiative heat loss and nonunity Lewis numbers

Journal Article · · Combustion and Flame
;  [1];  [2]
  1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544-5263 (United States)
  2. Department of Marine Engineering, National Taiwan Ocean University, Keelung (Taiwan)

The structure and extinction characteristics of counterflow diffusion flames with flame radiation and nonunity Lewis numbers of the fuel and oxidant are examined using multiscale asymptotic theory, and a model expressed in terms of the jump relations and reactant leakages with the proper consideration of the excess enthalpy overlooked in previous analyses is developed. The existence of the dual extinction limits in the presence of radiative heat loss, namely the kinetic limit at small Damkoehler number (high stretch rate) and the radiative limit at large Damkoehler number (low stretch rate), are identified. It is found that the former is minimally affected by radiative loss, while a substantial amount of heat loss is associated with the radiative limit. Reactant leakage, however, is the root cause for both limits. The influence of radiative loss on the extinction Damkoehler numbers is found to be through its effects on the flame temperature, the excess enthalpy, and the reduced extinction Damkoehler number. At both extinction limits, the contribution from the flame temperature is always important and dominant. The contributions from the other two, however, could be important in some special cases. At small Le{sub F}, the contribution from the reduced extinction Damkoehler number is large and even dominant under small radiative loss. The contribution from the excess enthalpy is important for small Le{sub O} and it may be comparable to the contribution from the flame temperature when radiative loss is small. Thus, overlooking the excess enthalpy in previous analyses may have resulted in rather large error in the predicted extinction Damkoehler numbers, especially the kinetic one. (author)

OSTI ID:
20864953
Journal Information:
Combustion and Flame, Vol. 148, Issue 3; Other Information: Elsevier Ltd. All rights reserved; ISSN 0010-2180
Country of Publication:
United States
Language:
English

Similar Records

Direct simulations of premixed turbulent flames with nonunity Lewis numbers
Journal Article · Thu Jul 01 00:00:00 EDT 1993 · Combustion and Flame; (United States) · OSTI ID:20864953

Extinction of Premixed Counterflow Ammonia-Air Flames
Conference · Mon Mar 11 00:00:00 EDT 2024 · OSTI ID:20864953

Radiation extinction limit of counterflow premixed lean methane-air flames
Journal Article · Sun Jun 01 00:00:00 EDT 1997 · Combustion and Flame · OSTI ID:20864953