skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Metabolic regulation of neutrophil spreading, membrane tubulovesicular extensions (cytonemes) formation and intracellular pH upon adhesion to fibronectin

Journal Article · · Experimental Cell Research
 [1];  [1];  [2]
  1. A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University, 119992 Leninskie gory, Bldg. A, Moscow (Russian Federation)
  2. Altana Pharma AG, 78467 Constance (Germany)

Circulating leukocytes have a round cell shape and roll along vessel walls. However, metabolic disorders can lead them to adhere to the endothelium and spread (flatten). We studied the metabolic regulation of adhesion, spreading and intracellular pH (pHi) of neutrophils (polymorphonuclear leukocytes) upon adhesion to fibronectin-coated substrata. Resting neutrophils adhered and spread on fibronectin. An increase in pHi accompanied neutrophil spreading. Inhibition of oxidative phosphorylation or inhibition of P- and F-type ATPases affected neither neutrophil spreading nor pHi. Inhibition of glucose metabolism or V-ATPase impaired neutrophil spreading, blocked the increase in the pHi and induced extrusion of membrane tubulovesicular extensions (cytonemes), anchoring cells to substrata. Omission of extracellular Na{sup +} and inhibition of chloride channels caused a similar effect. We propose that these tubulovesicular extensions represent protrusions of exocytotic trafficking, supplying the plasma membrane of neutrophils with ion exchange mechanisms and additional membrane for spreading. Glucose metabolism and V-type ATPase could affect fusion of exocytotic trafficking with the plasma membrane, thus controlling neutrophil adhesive state and pHi. Cl{sup -} efflux through chloride channels and Na{sup +} influx seem to be involved in the regulation of the V-ATPase by carrying out charge compensation for the proton-pumping activity and through V-ATPase in regulation of neutrophil spreading and pHi.

OSTI ID:
20858011
Journal Information:
Experimental Cell Research, Vol. 312, Issue 13; Other Information: DOI: 10.1016/j.yexcr.2006.04.011; PII: S0014-4827(06)00165-0; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0014-4827
Country of Publication:
United States
Language:
English