skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Benefit of three-dimensional image-guided stereotactic localization in the hypofractionated treatment of lung cancer

Journal Article · · International Journal of Radiation Oncology, Biology and Physics
 [1];  [1];  [1];  [1];  [1]
  1. Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA (United States)

Purpose: The aim of this study was to investigate the benefit of image-guided stereotactic localization in the hypofractionated treatment for medically inoperable non-small-cell lung cancer. Methods and Materials: A stereotactic body localizer (SBL) system was used for patient immobilization, reliable image registration among multiphase computed tomography (CT) scanning, and image-guided stereotactic localization. Three sets of CT scans were taken (free breathing, and breath holding at the end-tidal inspiration and expiration, respectively) to contrast target motion. Target delineation was performed on all 3 sets of images and the combination of the targets forms an internal target volume (ITV). In this retrospective study of treatment dose verification, we performed image fusion between the simulation CT scan and each pretreatment CT scan to obtain the same target and critical structure information. The same treatment plans were reloaded onto each pretreatment CT scan with their respective stereotactic coordinate system. The changes in dose distributions were assessed by dose-volume histograms of the planning target volume (PTV) and the critical structures before and after isocenter corrections which were prompted by image-guided stereotactic localization. We compared D{sub 95}, D{sub 99}, and V{sub 95} for the PTV and internal target volume, and V{sub 2} and V{sub 3} for the ipsilateral lung. Results: Our retrospective study for 10 patients with 40 dose reconstructions showed that the average D{sub 95}, D{sub 99}, and V{sub 95} of the PTVs are 92.1%, 88.1%, and 95.8% of the planned values before isocenter corrections. With the corrections, all of these values are improved to 100% of the planned values. Conclusions: Three-dimensional image guidance is crucial for stereotactic radiotherapy of lung tumors.

OSTI ID:
20850158
Journal Information:
International Journal of Radiation Oncology, Biology and Physics, Vol. 66, Issue 3; Conference: 48. annual meeting of the American Society for Therapeutic Radiology and Oncology, Pennsylvania, PA (United States), 5-9 Nov 2006; Other Information: DOI: 10.1016/j.ijrobp.2006.05.032; PII: S0360-3016(06)00957-6; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0360-3016
Country of Publication:
United States
Language:
English