skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A parallel algorithm for 3D dislocation dynamics

Journal Article · · Journal of Computational Physics
 [1];  [1];  [2];  [2]
  1. University of California - Los Angeles, Los Angeles, CA 90095-1597 (United States)
  2. University of California, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals.

OSTI ID:
20840365
Journal Information:
Journal of Computational Physics, Vol. 219, Issue 2; Other Information: DOI: 10.1016/j.jcp.2006.04.005; PII: S0021-9991(06)00194-X; Copyright (c) 2006 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-9991
Country of Publication:
United States
Language:
English