skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Safety System Design Concept and Performance Evaluation for a Long Operating Cycle Simplified Boiling Water Reactor

Journal Article · · Nuclear Technology
OSTI ID:20837761

The long operating cycle simplified boiling water reactor is a reactor concept that pursues both safety and the economy by employing a natural circulation reactor core without a refueling, a passive decay heat removal, and an integrated building for the reactor and turbine. Throughout the entire spectrum of the design basis accident, the reactor core is kept covered by the passive emergency core cooling system. The decay heat is removed by the conventional active low-pressure residual heat removal system. As for a postulated severe accident, the suppression pool water floods the lower part of the reactor pressure vessel (RPV) in the case when core damage occurs, and the in-vessel retention that keeps the melt inside the RPV is achieved by supplying the coolant. The containment adopts a parallel-double-steel-plate structure similar to a hull structure, which contains coolant between the inner and outer walls to absorb the heat transferred from the inside of the containment. Consequently, the containment structure functions as a passive containment cooling system (PCCS) to remove the decay heat in case of an accident. This paper describes the PCCS performance evaluation by using TRAC code to show one of the characteristic plant features. The core damage frequency for internal events was also evaluated to examine the safety level of the plant and to show the adequacy of the safety system design.

OSTI ID:
20837761
Journal Information:
Nuclear Technology, Vol. 143, Issue 1; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA); ISSN 0029-5450
Country of Publication:
United States
Language:
English