skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Angular Leakage Correction for Modeling a Hemisphere, Using One-Dimensional Spherical Coordinates

Journal Article · · Nuclear Science and Engineering
OSTI ID:20804828
;  [1]
  1. Fluor Federal Services (United States)

A radially dependent, angular leakage correction was applied to a one-dimensional, multigroup neutron diffusion theory computer code to accurately model hemispherical geometry. This method allows the analyst to model hemispherical geometry, important in nuclear criticality safety analyses, with one-dimensional computer codes, which execute very quickly. Rapid turnaround times for scoping studies thus may be realized. This method uses an approach analogous to an axial leakage correction in a one-dimensional cylinder calculation. The two-dimensional Laplace operator was preserved in spherical geometry using a leakage correction proportional to 1/r{sup 2}, which was folded into the one-dimensional spherical calculation on a mesh-by-mesh basis. Hemispherical geometry is of interest to criticality safety because of its similarity to piles of spilled fissile material and accumulations of fissile material in process containers. A hemisphere also provides a more realistic calculational model for spilled fissile material than does a sphere.

OSTI ID:
20804828
Journal Information:
Nuclear Science and Engineering, Vol. 143, Issue 1; Other Information: Copyright (c) 2006 American Nuclear Society (ANS), United States, All rights reserved. http://epubs.ans.org/; Country of input: International Atomic Energy Agency (IAEA); ISSN 0029-5639
Country of Publication:
United States
Language:
English