skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparative sensitivity of rat cerebellar neurons to dysregulation of divalent cation homeostasis and cytotoxicity caused by methylmercury

Journal Article · · Toxicology and Applied Pharmacology
 [1];  [1];  [1]
  1. Department of Pharmacology and Toxicology, Michigan State University, B331 Life Sciences Building, East Lansing, MI 48824-1317 (United States)

The objective of the present study was to determine the relative effectiveness of methylmercury (MeHg) to alter divalent cation homeostasis and cause cell death in MeHg-resistant cerebellar Purkinje and MeHg-sensitive granule neurons. Application of 0.5-5 {mu}M MeHg to Purkinje and granule cells grown in culture caused a concentration- and time-dependent biphasic increase in fura-2 fluorescence. At 0.5 and 1 {mu}M MeHg, the elevations of fura-2 fluorescence induced by MeHg were biphasic in both cell types, but significantly delayed in Purkinje as compared to granule cells. Application of the heavy-metal chelator, TPEN, to Purkinje cells caused a precipitous decline in a proportion of the fura-2 fluorescence signal, indicating that MeHg causes release of Ca{sup 2+} and non-Ca{sup 2+} divalent cations. Purkinje cells were also more resistant than granule cells to the neurotoxic effects of MeHg. At 24.5 h after-application of 5 {mu}M MeHg, 97.7% of Purkinje cells were viable. At 3 {mu}M MeHg there was no detectable loss of Purkinje cell viability. In contrast, only 40.6% of cerebellar granule cells were alive 24.5 h after application of 3 {mu}M MeHg. In conclusion, Purkinje neurons in primary cultures appear to be more resistant to MeHg-induced dysregulation of divalent cation homeostasis and subsequent cell death when compared to cerebellar granule cells. There is a significant component of non-Ca{sup 2+} divalent cation released by MeHg in Purkinje neurons.

OSTI ID:
20722023
Journal Information:
Toxicology and Applied Pharmacology, Vol. 208, Issue 3; Other Information: DOI: 10.1016/j.taap.2005.02.015; PII: S0041-008X(05)00109-2; Copyright (c) 2005 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved; Country of input: International Atomic Energy Agency (IAEA); ISSN 0041-008X
Country of Publication:
United States
Language:
English