skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superluminal and slow light in {lambda}-type three-level atoms via squeezed vacuum and spontaneously generated coherence

Journal Article · · Physical Review. A
; ;  [1];  [2]
  1. Escuela Universitaria de Optica, Universidad Complutense de Madrid, C/ Arcos de Jalon s/n, 28037 Madrid (Spain)
  2. Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 (Spain)

We study the dispersion and absorption spectra of a weak probe in a {lambda}-type three-level atomic system with closely ground sublevels driven by a strong field and damped by a broadband squeezed vacuum. We analyze the interplay between the spontaneous generated coherence and the squeezed field on the susceptibility of the atomic system. We find that by varying the intensity of the squeezed field the group velocity of a weak pulse can change from subluminal to superluminal. In addition we exploit the fact that the properties of the atomic medium can be dramatically modified by controlling the relative phase between the driving field and the squeezed field, allowing us to manipulate the group velocity at which light propagates. The physical origin of this phenomenon corresponds to a transfer of the atomic coherence from electromagnetically induced transparency to electromagnetically induced absorption. Besides, this phenomenon is achieved under nearly transparency conditions and with negligible distortion of the propagation pulse.

OSTI ID:
20717966
Journal Information:
Physical Review. A, Vol. 71, Issue 6; Other Information: DOI: 10.1103/PhysRevA.71.063805; (c) 2005 The American Physical Society; Country of input: International Atomic Energy Agency (IAEA); ISSN 1050-2947
Country of Publication:
United States
Language:
English