skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spatial, temporal, and interspecies patterns in fine particulate matter in Texas

Journal Article · · Journal of the Air and Waste Management Association
; ;  [1]
  1. Colorado State University, Fort Collins, CO (United States). National Park Service

The Big Bend Regional Aerosol and Visibility Observational (BRAVO) field study was conducted from July to October 1999 and was followed by several years of modeling and data analyses to examine the causes of haze at Big Bend National Park TX (BBNP). During BRAVO, daily speciated fine (diameter <2.5 {mu}m) particulate concentrations were measured at 37 sites throughout Texas. At the primary receptor site, K-Bar Ranch, there were many additional measurements including a 'high-sensitivity' version of the 24-hr fine particulate elemental data. The spatial, temporal, and interspecies patterns in these data are examined here to qualitatively investigate source regions and source types influencing the fine particulate concentrations in Texas with an emphasis on sources of sulfates, the largest contributor to fine mass and light extinction. Peak values of particulate sulfur (S) varied spatially and seasonally. Maximum S was in Northeast Texas during the summer, whereas peak S at BBNP was in the fall. Sulfate acidity at BBNP also varied by month. Sources of Se were evident in Northeast Texas and from the Carbon I and II coal-fired plants. High S episodes at BBNP during BRAVO had several different trace element characteristics. Carbon concentrations at BBNP during BRAVO were probably mostly urban-related, with arrival from the Houston area likely. The Houston artificial tracer released during the second half of BRAVO was highly correlated with some carbon fractions. There was evidence of the influence of African dust at sites throughout Texas during the summer. Patterns in several trace elements were also examined. Vanadium was associated with air masses from Mexico. Lead concentrations in southern Texas have dropped dramatically over the past several years. 23 refs., 9 figs., 2 tabs.

OSTI ID:
20688426
Journal Information:
Journal of the Air and Waste Management Association, Journal Name: Journal of the Air and Waste Management Association; ISSN 1047-3289
Country of Publication:
United States
Language:
English