skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Endoprobe: A system for radionuclide-guided endoscopy

Journal Article · · Medical Physics
DOI:https://doi.org/10.1118/1.1819780· OSTI ID:20634522
;  [1]
  1. Center for Advanced Imaging, Department of Radiology, West Virginia University, Morgantown, West Virginia 26506-9236 (United States)

Methods to guide the surgical treatment of cancer utilizing handheld beta-sensitive probes in conjunction with tumor-avid radiopharmaceuticals [such as {sup 18}F-fluorodeoxyglucose (FDG)] have previously been developed. These technologies could also potentially be used to assist in minimally invasive techniques for the diagnosis of cancer. The goal of this project is to develop and test a system for performing radionuclide-guided endoscopies. This system (called Endoprobe) has four major subsystems: beta detector, position tracker, endoscope, and user interface. The beta detection unit utilizes two miniaturized solid state detectors to preferentially detect beta particles. The position tracking system allows real-time monitoring of the unit's location. The beta detector and position tracking system's receiver are mounted on the tip of an endoscope. Information from the beta detector and tracking system, in addition to the video signal from the endoscope, are combined and presented to the user via a computer interface. The system was tested in a simulated search for radiotracer-avid areas of esophageal cancer. The search for esophageal cancer was chosen because this type of cancer is often diagnosed with endoscopic procedures and has been reported to have good affinity for FDG. Accumulations of FDG in the normal organs of the abdomen were simulated by an anthropomorphic torso phantom filled with the appropriate amounts of radioactivity. A 1.5-mm-thick gelatin film containing FDG was used to simulate radiotracer uptake in the lining of normal esophagus. Esophageal lesions (both benign and malignant) were simulated by thin disks of gelatin (diameters=3.5-12 mm) containing appropriate concentrations of FDG embedded in the gelatin film simulating normal esophagus. Endoprobe facilitated visual identification and examination of the simulated lesions. The position tracking system permitted the location of the Endoprobe tip to be monitored and plotted in real time on a previously acquired positron emission tomography-computed tomography (PET-CT) image of the phantom. The detection system successfully acquired estimates of the beta flux emitted from areas chosen by the user. Indeed, Endoprobe was able to assist in distinguishing simulated FDG-avid areas as small as 3.5 mm in diameter from normal esophagus (p value <0.025). In addition to FDG, Endoprobe can be used with other positron or electron-emitting radionuclides such as {sup 11}C or {sup 131}I. The next phase of this project will focus on modification of the prototype to make it more suitable for clinical use.

OSTI ID:
20634522
Journal Information:
Medical Physics, Vol. 31, Issue 12; Other Information: DOI: 10.1118/1.1819780; (c) 2004 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-2405
Country of Publication:
United States
Language:
English