skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Feasibility Study of a Nuclear-Stirling Power Plant for the Jupiter Icy Moons Orbiter

Journal Article · · AIP Conference Proceedings
DOI:https://doi.org/10.1063/1.1867193· OSTI ID:20630585
 [1];  [2];  [3]
  1. Power Computing Solutions, Inc., Avon, OH 44011 (United States)
  2. NASA Glenn Research Center at Lewis Field, MS 301-2, 21000 Brookpark Road, Cleveland, OH 44135 (United States)
  3. L. Barry Penswick Consulting, Stevenson, WA 98648 (United States)

NASA is undertaking the design of a new spacecraft to explore the planet Jupiter and its three moons Calisto, Ganymede and Europa. This proposed mission, known as Jupiter Icy Moons Orbiter (JIMO) would use a nuclear reactor and an associated electrical generation system (Reactor Power Plant - RPP) to provide power to the spacecraft. The JIMO spacecraft is envisioned to use this power for science and communications as well as Electric Propulsion (EP). Among other potential power-generating concepts, previous studies have considered Thermoelectric and Brayton power conversion systems, coupled to a liquid metal reactor for the JIMO mission. This paper will explore trades in system mass and radiator area for a nuclear reactor power conversion system, however this study will focus on Stirling power conversion. Stirling convertors have a long heritage operating in both power generation and the cooler industry, and are currently in use in a wide variety of applications. The Stirling convertor modeled in this study is based upon the Component Test Power Convertor design that was designed and operated successfully under the Civil Space Technology Initiative for use with the SP-100 nuclear reactor in the 1980's and early 1990's. The baseline RPP considered in this study consists of four dual-opposed Stirling convertors connected to the reactor by a liquid lithium loop. The study design is such that two of the four convertors would operate at any time to generate the 100 kWe while the others are held in reserve. For this study the Stirling convertors hot-side temperature is 1050 K, would operate at a temperature ratio of 2.4 for a minimum mass system and would have a system efficiency of 29%. The Stirling convertor would generate high voltage (400 volt), 100 Hz single phase AC that is supplied to the Power Management and Distribution system. The waste heat is removed from the Stirling convertors by a flowing liquid sodium-potassium eutectic and then rejected by a shared radiator. The radiator consists of two coplanar wings, which would be deployed after the reactor is in space. For this study design, the radiators would be located behind the conical radiation shield of the reactor and fan out as the radiator's distance from the reactor increases. System trades were performed to vary cycle state point temperatures and convertor design as well as power output. Other redundancy combinations were considered to understand the affects of convertor size and number of spares to the system mass.

OSTI ID:
20630585
Journal Information:
AIP Conference Proceedings, Vol. 746, Issue 1; Conference: STAIF 2005: Conference on thermophysics in microgravity; Conference on commercial/civil next generation space transportation; 22. symposium on space nuclear power and propulsion; Conference on human/robotic technology and the national vision for space exploration; 3. symposium on space colonization; 2. symposium on new frontiers and future concepts, Albuquerque, NM (United States), 13-17 Feb 2005; Other Information: DOI: 10.1063/1.1867193; (c) 2005 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA); ISSN 0094-243X
Country of Publication:
United States
Language:
English