skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effect [of] co-combustion of sewage sludge and biomass on combustion behavior and emissions in pulverized fuel systems

Conference ·
OSTI ID:20082240

Biomass not only has a considerable potential as an additional fuel source but also shows a reasonable cost level in comparison to other renewable energies. The practicable fuel types are both residual material from forestry and agriculture, such as wood or straw, and especially cultivated reproducible feedstock such as Miscanthus Sinensis, whole cereal plants, poplars, or willows. Besides as single fuel, it is also considered to be sensible to utilize biomass in co-combustion in existing firing systems, such as pc-fired power stations. Biomass or sewage sludge utilized as additional fuel in coal combustion systems has consequences on combustion behavior, emissions, corrosion and residual matter. The effects of burning sewage sludge and agricultural residuals such as straw and manure as well as specially grown energy plants in combination with coal were studied in a 0.5 MW pulverized fuel test facility and a 20 kW electrically heated combustor. A major aspect of the investigations had been the required preparation and milling of the additional fuels. The investigations showed that in co-combustion of straw with coal, a grinding of 6 mm and finer is sufficient. The definitely coarser milling degree of biomass delays combustion and is observable by in-flame measurements. The investigations reveal that biomass addition has a positive effect on emissions. Since biomass in most cases contains considerably less sulphur than coal, an increasing biomass share in the thermal output makes the SO{sub 2} emissions decrease proportionally. In addition, SO{sub 2} can partly be captured in the ash by the alkaline-earth fractions of the biomass ash. As for sewage sludge, the emissions of SO{sub 2} correlate with the sulphur content of the fuel and, hence, rise with an increasing share of this biomass. Independently from the type, biomass shows a considerably stronger release of volatile matter. This latter fact may have a positive impact on NOx emissions when NOx-reducing techniques are applied. Within the framework of these investigations the following configurations were used: (1) unstaged combustion with preblending of coal and biomass, (2) air-staged combustion with preblending of coal and biomass, (3) reburning with biomass as reduction fuel, and (4) various burner configurations. The results show that the burner design and operation mode have a great influence on the NOx emissions of combined flames. Air staging and reburning are effective measures to reduce the NOx emissions of combined fuels. NOx emissions smaller than 300 mg/m at 6% O{sub 2} can be reached with all fuels.

Research Organization:
Univ. of Stuttgart (DE)
OSTI ID:
20082240
Resource Relation:
Conference: Sixteenth Annual International Pittsburgh Coal Conference, Pittsburgh, PA (US), 10/11/1999--10/15/1999; Other Information: 1 CD-ROM. Operating systems required: Windows 95/98; Windows 3.X, Macintosh; PBD: 1999; Related Information: In: Sixteenth annual international Pittsburgh Coal Conference: Proceedings, [2000] pages.
Country of Publication:
United States
Language:
English