skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancing understanding of the operation of the dynamic containment combustor through CFD modelling

Conference ·
OSTI ID:20019070

The dynamic Containment Combustor (DCC) is an Ultra Low NOx burner, consisting of two counter-flowing, co-swirling, annular feeds of premixed gaseous methane-air mixture into a cylindrical chamber. The exhaust is located on the axis, at one end of the combustor. A cylindrical flame with a radius about the size of the exhaust port is established along the length of the chamber allowing the combustor walls to operate at cool conditions. In order to provide Ultra Low NOx operation with suitable turn down ratios, stability of operation and high combustion efficiencies, in the absence of detailed experimental measurements, CFD simulation of a simplified 2D model has been utilized to enhance understanding of the behavior of the combustor operation. A suitable choice of combustion model constants were made. Based on nominal design conditions of 0.03kg/s mass flow rate, equivalence ratio of 0.8 and rear mass fraction of 10%, extensive parametric tests were conducted. The effect of equivalence ratio (0.4--1.1), rear flow split (7--14%), front flow angle (40deg--70deg) and rear flow angle (10deg--80deg) on burner performance characteristics are reported here. The simulations show that with appropriate adjustments to the constants of the Eddy-Dissipation model, some of the main flow field features, like the position of the flame sheet and the expected shapes of axial and radial velocity profiles have been successfully predicted. The simulations have also highlighted the disadvantage by using a fast chemistry combustion model. Future work needs to address this issue by using a combustion model which includes chemical kinetic effects.

Research Organization:
Technical Univ. of Brno (CZ)
OSTI ID:
20019070
Resource Relation:
Conference: 5th ASME/JSME Thermal Engineering Joint Conference, San Diego, CA (US), 03/14/1999--03/19/1999; Other Information: 1 CD-ROM. Operating Systems required: Windows i386, i486, Pentium Pro, MS Windows 3.1, 95, or NT3.51, 8MB Ram, MacIntosh and Power MacIntosh with a 68020 or greater processor, System software version 7.1, 3.5 MB RAM (5 MB for PowerMac), 6 MB available hard-disk space, Unix; PBD: 1999; Related Information: In: Proceedings of the 5th ASME/JSME thermal engineering joint conference, [3600] pages.
Country of Publication:
United States
Language:
English