skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The free energies of reactions of chlorinated methanes with aqueous monovalent anions: Application of ab initio electronic structure theory

Journal Article · · Journal of Physical Chemistry A: Molecules, Spectroscopy, Kinetics, Environment, amp General Theory
DOI:https://doi.org/10.1021/jp9923163· OSTI ID:20017564

The presence of different anionic species in natural waters can significantly alter the degradation rates of chlorinated methanes and other organic compounds. favorable reaction energetics is a necessary feature of these nucleophilic substitution reactions that can result in the degradation of the chlorinated methanes. In this study, ab initio electronic structure theory is used to evaluate the free energies of reaction of a series of monovalent anionic species (OH{sup {minus}}, SH{sup {minus}}, NO{sub 3}{sup {minus}}, HCO{sub 3}{sup {minus}}, HSO{sub 3}{sup {minus}}, HSO{sub 4}{sup {minus}}, H{sub 2}PO{sub 4}{sup {minus}}, and F{sup {minus}}) that can occur in natural waters with the chlorinated methanes, CCk{sub 4}, CCl{sub 3}H, CCl{sub 2}H{sub 2}, and CClH{sub 3}. The results of this investigation show that nucleophilic substitution reactions of OH{sup {minus}}, SH{sup {minus}}, HCO{sub 3}{sup {minus}}, and F{sup {minus}} are significantly exothermic for chlorine displacement, NO{sub 3}{sup {minus}} reactions are slightly exothermic to the thermoneutral, HSO{sub 3}{sup {minus}} reactions are slightly endothermic to thermoneutral and HSO{sub 4}{sup {minus}}, and H{sub 2}PO{sub 4}{sup {minus}} reactions are significantly endothermic. In the case of OH{sup {minus}}, SH{sup {minus}}, and F{sup {minus}} where there are limited experimental data, these results agree well with experiment. The results for HCO{sub 3}{sup {minus}} are potentially important given the near ubiquitous occurrence of carbonate species in natural waters. The calculations reveal that the degree of chlorination, with the exception of substitution of OH{sup {minus}}, does not have a large effect on the Gibbs free energies of the substitution reactions. These results demonstrate that ab initio electronic structure methods can be used to calculate the reaction energetics of a potentially large number of organic compounds with other aqueous species in natural waters and can be used to help identify the potentially important environmental degradation reactions.

Research Organization:
Pacific Northwest National Lab., Richland, WA (US)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC06-76RL01830
OSTI ID:
20017564
Journal Information:
Journal of Physical Chemistry A: Molecules, Spectroscopy, Kinetics, Environment, amp General Theory, Vol. 104, Issue 3; Other Information: PBD: 27 Jan 2000; ISSN 1089-5639
Country of Publication:
United States
Language:
English

Similar Records

The Free Energies of Reactions of Chlorinated Methanes with Aqueous Monovalent Anions: Applications of ab initio Electronic Structure Theory
Journal Article · Sat Jan 01 00:00:00 EST 2000 · Journal of Physical Chemistry A: Molecules, Spectroscopy, Kinetics, Environment, amp General Theory · OSTI ID:20017564

Selectivity and reactivity of hot homolytic aromatic substitution by recoil chlorine atoms
Journal Article · Wed Apr 27 00:00:00 EDT 1977 · J. Am. Chem. Soc.; (United States) · OSTI ID:20017564

Stopped-flow studies of carbon dioxide hydration and bicarbonate dehydration in H/sub 2/O and D/sub 2/O. Acid-base and metal ion catalysis
Journal Article · Wed Sep 28 00:00:00 EDT 1977 · J. Am. Chem. Soc.; (United States) · OSTI ID:20017564