skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hafnium hydroxide complexation and solubility: The impact of hydrolysis reactions on the disposition of weapons-grade plutonium

Conference ·
OSTI ID:20015860

The stability constants for the complexation of hafnium by hydroxide ions is investigated by potentiometric titration over a range of ionic strengths (I{sub m} = 0.1 to 6.6 molal). The stability constants are determined from the titration data using the HYPERQUAD suite of programs. The stability constants at infinite dilution are determined using the Specific Ion Interaction Theory from the stability constants determined by titration. The solubility product of Hf(OH){sub 4} (s) is determined in 0.1 M NaClO{sub 4} by measuring the total hafnium in solution that is in equilibrium with an excess of hafnium hydroxide solid under an argon atmosphere. The total Hf concentration is determined by ICP-AES. The solubility product is determined using the stability constants measured for the Hf hydrolysis products in 0.1 M NaClO{sub 4}. The precipitate examined is confirmed to be a hydroxide by IR spectroscopy. For Hf(OH){sub 4} (s) in 0.1 M NaClO{sub 4}, the solubility product is log K{sub sp} (Hf(OH){sub 4} (s)) = {minus}51.8 {+-} 0.5. The solubility and stability constants determined are used, along with literature values for plutonium solubility and complexation constants, to examine the behavior of hafnium and plutonium under the conditions expected at Yucca Mountain.

Research Organization:
Massachusetts Inst. of Tech., Cambridge, MA (US)
Sponsoring Organization:
USDOE
OSTI ID:
20015860
Resource Relation:
Conference: 1998 Materials Research Society Fall Meeting, Boston, MA (US), 11/30/1998--12/04/1998; Other Information: Single article reprints are available from University Microfilms Inc., 300 North Zeeb Road, Ann Arbor, Michigan 48106; PBD: 1999; Related Information: In: Scientific basis for nuclear waste management XXII. Materials Research Society symposium proceedings: Volume 556, by Wronkiewicz, D.J.; Lee, J.H. [eds.], 1355 pages.
Country of Publication:
United States
Language:
English