skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Combined effects of deforestation and doubled atmospheric CO{sub 2} concentrations on the climate of Amazonia

Journal Article · · Journal of Climate

It is generally expected that the Amazon basin will experience at least two major environmental changes during the next few decades and centuries: (1) increasing areas of forest will be converted to pasture and cropland, and (2) concentrations of atmospheric CO{sub 2} will continue to rise. In this study, the authors use the National Center for Atmospheric Research GENESIS atmospheric general circulation model, coupled to the Integrated Biosphere Simulator, to determine the combined effects of large-scale deforestation and increased CO{sub 2} concentrations (including both physiological and radiative effects) on Amazonian climate. In these simulations, deforestation decreases basin-average precipitation by 0.73 mm day{sup {minus}1} over the basin, as a consequence of the general reduction in vertical motion above the deforested area (although there are some small regions with increased vertical motion). The overall effect of doubled CO{sub 2} concentrations in Amazonia is an increase in basin-average precipitation of 0.28 mm day{sup {minus}1}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, is a decrease in the basin-average precipitation of 0.42 mm day{sup {minus}1}. While the effects of deforestation and increasing CO{sub 2} concentrations on precipitation tend to counteract one another, both processes work to warm the Amazon basin. The effect of deforestation and increasing CO{sub 2} concentrations both tent to increase surface temperature, mainly because of decreases in evapotranspiration and the radiative effect of CO{sub 2}. The combined effect of deforestation and doubled CO{sub 2}, including the interactions among the processes, increases the basin-average temperature by roughly 3.5 C.

Research Organization:
Univ. of Wisconsin, Madison, WI (US)
OSTI ID:
20015079
Journal Information:
Journal of Climate, Vol. 13, Issue 1; Other Information: PBD: 1 Jan 2000; ISSN 0894-8755
Country of Publication:
United States
Language:
English