skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluations of membrane fouling potential in water treatment applications

Conference ·
OSTI ID:20014795

Membrane processes such as ultrafiltration, nanofiltration, and reverse osmosis are becoming increasingly popular in water treatment utilities because of their ability to produce high finished water quality. A major problem affecting the economics of these processes is permeate flux decline due to membrane fouling. The types of membrane fouling can be broadly categorized as follows: organic fouling, biofouling, colloidal fouling, inorganic fouling, and precipitation scaling. The membrane performance with respect to resistance to fouling as well as rejection characteristics is an important consideration. Selection of appropriate membranes for performance improvement in water treatment applications mandates the evaluation of the fouling potential, an aspect related to the membrane material, membrane type, nature of feed solution, and interactions between membranes and solutes. In the present study, the membrane fouling potential is evaluated by membrane performance tests with respect to permeate flux and solute rejections, and by membrane surface characterization techniques including measurements of membrane sorption, zeta potential, contact angles, and membrane surface morphology. These surface characterization techniques are intended to evaluate membrane sorption characteristics (with respect to foulants), membrane surface hydrophobicity, membrane surface charge under different solution conditions, and changes on membrane surface topography on the clean and fouled membranes.

Research Organization:
Univ. of Southern California, Los Angeles, SC (US)
OSTI ID:
20014795
Resource Relation:
Conference: ASCE-CSCE 1999 National Conference on Environmental Engineering, Norfolk, VA (US), 07/25/1999--07/28/1999; Other Information: PBD: 1999; Related Information: In: Environmental engineering 1999, by Schafran, G.C. [ed.], 936 pages.
Country of Publication:
United States
Language:
English