skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantification of synthetic organic chemicals in biological treatment process effluent using solid-phase microextraction and gas chromatography

Journal Article · · Water Environment Research

Solid-phase microextraction (SPME), a technique that uses a polymer-coated, fused-silica fiber to selectively extract organic analyses from a sample matrix, followed by gas chromatography (GC), was used to quantify selected synthetic organic chemicals (SOCs) in biological reactor effluent. By selecting an appropriate combination of SPME fiber, GC column, and GC detector, assays to quantify either a suite of SOCs or single selected SOCs were developed. Phenol, 4-chlorophenol, 2-nitrophenol, 4-nitrophenol, 2,4,-dinitrophenol, isophorone, m-toluate, m-sylene, and di-n-butylphthalate were quantified simultaneously using an 85-{micro}m polyacrylate SPME fiber, a 5% diphenyl-95% dimethyl polysiloxane capillary column, and a flame ionization detector. m-Xylene was quantified using a 100-{micro}m polydimethylsiloxane SPME fiber, a 5% diphenyl-95% dimethyl polysiloxane capillary column, and a mass spectrometric detector. Dichloromethane was quantified using an 85-{micro}m polyacrylate SPME fiber, a Carbopack B/1% SP-1000 packed column, and an electron capture detector. All three assays enabled detection of the target analyses to low concentrations ({micro}g/L) with minimal sample volume and processing requirements.

OSTI ID:
20014590
Journal Information:
Water Environment Research, Vol. 72, Issue 1; Other Information: PBD: Jan-Feb 2000; ISSN 1061-4303
Country of Publication:
United States
Language:
English