skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development of improved sorbents for the moving-bed copper oxide process

Conference ·
OSTI ID:20013469

In the Clean Air Act Amendments (CAAA) of 1990, legislation was introduced requiring electric utilities to adopt available technology for removal of pollutant gases (mainly SO{sub 2} and NO{sub x}) and particulates from coal combustion flue gases so that the increased use of coal is done in an environmentally acceptable manner. The threat from the damaging effects of gaseous pollutants is more of a concern in the state of Illinois where over 90% of the high-sulfur coal mined is consumed by electric utilities that are based on pulverized coal combustion, but only a very small fraction is currently equipped with Flue Gas Desulfurization (FGD) processes. The copper oxide process has been selected as one of the most promising emerging technologies for SO{sub 2} and NO{sub x} removal from flue gases in the Combustion 2000 program of the US Department of Energy. In particular, the development of the Copper Oxide Bed Regenerable Absorber (COBRA) process, which is based on moving-bed cross-flow reactor design for the combined removal of SO{sub 2}, NO{sub x} and particulates, has been pursued in conjunction with the use of Illinois coal. Given the strict limits on SO{sub 2} emissions (1.2 lbs of SO{sub 2} per million Btu by the year 2000), the high sulfur content of Illinois coal, and the growing concern with the disposal of solid residues from conventional FGD processes, the pursuit of the COBRA technology to meet CAAA emission standards represents a strategic choice for the Illinois coal research and development program. This Study has been directed towards the evaluation of the commodity copper oxide sorbent currently being utilized in the demonstration of the COBRA process, to identify areas of improvement, and to develop and implement a strategy for preparing improved sorbents. In this paper, the results obtained to-date from tests carried out for the evaluation of the commercial sorbent for SO{sub 2} removal, its regenerability, and its effectiveness with repeated use are presented and discussed. The results from chemical analysis and physical characterization of fresh and reacted samples are also presented and their implications discussed.

Research Organization:
Inst. of Gas Technology, Des Plaines, IL (US)
OSTI ID:
20013469
Resource Relation:
Conference: 24th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, FL (US), 03/08/1999--03/11/1999; Other Information: PBD: [1999]; Related Information: In: The proceedings of the 24th international technical conference on coal utilization and fuel systems, by Sakkestad, B.A. [ed.], 1091 pages.
Country of Publication:
United States
Language:
English