skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pilot-scale evaluation of chemical oxidation for MTBE-contaminated soil

Conference ·
OSTI ID:20006473

The US Environmental Protection Agency (USEPA) has tentatively classified MTBE as a possible human carcinogen, thus further emphasizing the importance for study of fate, transport, and environmental effects of MTBE. The treatment of subsurface contaminants (e.g., MTBE) from leaking underground storage tank (LUST) sites presents many complex challenges. Many techniques have been employed for the remediation of contaminants in soil and groundwater at LUST sites. Under sponsorship of US EPA's National Risk Management Research Laboratory, IT Corporation has conducted evaluations of chemical oxidation of MTBE contaminated soil using Fenton's Reagent (hydrogen peroxide catalyzed by ferrous sulfate), simulating both ex-situ and in-situ soil remediation. Bench-scale ex-situ tests have shown up to 90% degradation of MTBE within 12 hours. Pilot-scale MTBE oxidation tests were conducted in a stainless paddle-type mixer with a 10 cubic foot mixing volume. The reactor was designed with a heavy duty mixer shaft assembly to homogenize soil and included provisions for contaminant and reagent addition, mixing, and sample acquisition. The tests were performed by placing 400 pounds of a synthetic soil matrix (consisting of a mixture of top soil, sand, gravel and clay) in the reactor, spiking with 20 ppm of MTBE, and mixing thoroughly. The variables evaluated in the pilot-scale tests included reaction time, amount of hydrogen peroxide, and amount of ferrous sulfate. After 8 hours of reaction, using 4 times the stoichiometric quantity of hydrogen peroxide and a 10:1 hydrogen peroxide: ferrous iron weight ratio, approximately 60% MTBE degradation was observed. When 10 times the stoichiometric quantity of hydrogen peroxide was used (with the same ratio of hydrogen peroxide to ferrous iron), 90% MTBE degradation was observed. When the same test was performed without any ferrous iron addition, 75% MTBE degradation was observed.

Research Organization:
IT Corp., Cincinnati, OH (US)
OSTI ID:
20006473
Report Number(s):
CONF-990608-; TRN: IM200008%%80
Resource Relation:
Conference: Air and Waste 92nd Annual Meeting and Exhibition, St. Louis, MO (US), 06/20/1999--06/24/1999; Other Information: 1 CD-ROM. Operating Systems: Windows 3.1, '95, '98 and NT; Macintosh; and UNIX; PBD: 1999; Related Information: In: Air and Waste 92nd annual meeting and exhibition proceedings, [9500] pages.
Country of Publication:
United States
Language:
English