skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The SWAN-SCALE code for the optimization of critical systems

Journal Article · · Transactions of the American Nuclear Society
OSTI ID:20005788

The SWAN optimization code was recently developed to identify the maximum value of k{sub eff} for a given mass of fissile material when in combination with other specified materials. The optimization process is iterative; in each iteration SWAN varies the zone-dependent concentration of the system constituents. This change is guided by the equal volume replacement effectiveness functions (EVREF) that SWAN generates using first-order perturbation theory. Previously, SWAN did not have provisions to account for the effect of the composition changes on neutron cross-section resonance self-shielding; it used the cross sections corresponding to the initial system composition. In support of the US Department of Energy Nuclear Criticality Safety Program, the authors recently removed the limitation on resonance self-shielding by coupling SWAN with the SCALE code package. The purpose of this paper is to briefly describe the resulting SWAN-SCALE code and to illustrate the effect that neutron cross-section self-shielding could have on the maximum k{sub eff} and on the corresponding system composition.

Research Organization:
Univ. of California, Berkeley, CA (US)
OSTI ID:
20005788
Journal Information:
Transactions of the American Nuclear Society, Vol. 81; Conference: American Nuclear Society 1999 Winter Meeting, Long Beach, CA (US), 11/14/1999--11/18/1999; Other Information: PBD: 1999; ISSN 0003-018X
Country of Publication:
United States
Language:
English